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Preface

This volume 4465 of the Lecture Notes in Computer Science series is a collec-
tion of the papers of the NET-COOP 2007 conference, a first-of-a-series Euro-
NGI/FGI Conference on Network Control and Optimization. The event took
place in the beautiful city of Avignon, France, June 5–7, 2007, was jointly orga-
nized by INRIA and the University of Avignon and was hosted by the latter.

Internet communications and services are experiencing an increase in volume
and diversity both in their capacity and in their demand. This comes at the
cost of an increase in the complexity of their control and optimization, mainly
due to the heterogeneity in architecture as well as usage. The need for new
ways of effectively and fairly allocating resources belonging to a wide set of not
necessarily cooperative networks to a collection of possibly competing users is
urgent and is the aim of this conference.

Specifically, this conference aims at developing research on control and opti-
mization of the Internet, ranging from performance evaluation and optimization
of general stochastic networks to more specific targets such as lower-layer func-
tionalities in mobile networks, routing for computational grids, game theoretic
approaches to access control, cooperation, competition and adversary capacities
in diverse environments.

As stated earlier, the event is the first of a series initiated by Euro-NGI/FGI
Network of Excellence, a European consortium composed of 55 universities, re-
search laboratories and industrial partners, whose goal is to create, lead and
maintain the most prominent European center of excellence on future gener-
ation Internet design and engineering. In this context, NET-COOP, initiated
and led by Eitan Altman from the eponymous working group, aims to bring to-
gether researchers, both from Euro-NGI/FGI and outside, working in the areas
of network optimization and control.

During the conference, three keynote talks were given: by Thomas Bonald
from France Telecom R&D (“Resource Allocation in Data Networks”), Moshe
Haviv from the Hebrew University of Jerusalem (title: “To queue or not to
queue: The cases of partially and of fully observable M/G/1 queues”), and Ravi
Mazumdar from the University of Waterloo (title: “Distributed congestion con-
trol in networks: Solution concepts, distributed algorithms, and some recent
results”). There were also 31 paper presentations, 22 issued from regularly sub-
mitted papers (out of 46) and 9 invited ones, both groups having undergone a
review process. The final program shows a real international scope, with authors
from Europe, Asia and the Americas.

The success of NET-COOP 2007 was largely due to the General Chair, Jorma
Virtamo, and the Technical Program Committee, whose members devoted much
of their time and effort to provide a highly qualified technical program. To them
we express our many thanks and deepest gratitude.



VI Preface

We would also like to very sincerely thank our technical co-sponsors: IEEE
Control Systems Society (CSS) and IFIP TC6, as well as our financial co-
sponsors, Euro-NGI/FGI, INRIA, GET - Groupe des Ecoles des Télécommunica-
tions, Région Provence-Alpes-Côte d’Azur through their Conseil Régional and
France Telecom. We thank them very much for their trust and support.

Many warm thanks also go to the Springer LNCS team particularly Alfred
Hofmann, the Editorial Director, and Ursula Barth, for their confidence, kindness
and continuing help.

None of this would have been possible without the work and devotion of the
organizers and hosts, Eitan Altman, Tania Jimenez, Rachid El-Azouzi, Yezekael
Hayel, Ephie Deriche, Dany Sergeant and Monique Simonetti, from INRIA and
the University of Avignon. We tried to thank them all the way through but if
we did not, let us do it here: Thank you!

We would like to extend our thanks to all authors who submitted very high
quality papers to our conference, many of which were not accepted solely be-
cause of room, congratulate once again those whose papers were accepted, thank
all presenters and attendees for their effort and time and wish all the prospec-
tive readers to take as much pleasure in reading this manuscript as we took in
editing it.

June 2007 Tijani Chahed
Bruno Tuffin
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Rade Stanojević and Robert Shorten

How Expensive Is Link Utilization? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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A Jamming Game in Wireless Networks with

Transmission Cost�

E. Altman1, K. Avrachenkov1, and A. Garnaev2

1 INRIA Sophia Antipolis, France
{altman,k.avrachenkov}@sophia.inria.fr

2 St. Petersburg State University, Russia
agarnaev@rambler.ru

Abstract. We consider jamming in wireless networks with transmission
cost for both transmitter and jammer. We use the framework of non-zero-
sum games. In particular, we prove the existence and uniqueness of Nash
equilibrium. It turns out that it is possible to provide analytical expres-
sions for the equilibrium strategies. These expressions is a generalization
of the standard water-filling. In fact, since we take into account the cost
of transmission, we obtain even a generalization of the water-filling in
the case of one player game. The present framework allows us to study
both water-filling in time and water-filling in frequency. By means of nu-
merical examples we study an important particular case of jamming of
the OFDM system when the jammer is situated close to the base station.

Keywords: Wireless networks, Jamming, Non-zero-sum games, Nash
Equilibrium, Water-filling.

1 Introduction and Problem Formulation

Power control in wireless networks became an important research area. Since the
technology in the current state cannot provide batteries which have small weight
and large energy capacity, the design of algorithms for efficient power control is
crucial. For a comprehensive survey of recent results on power control in wireless
networks an interested reader can consult [15]. It turns out that game theory
provides a convenient framework for approaching the power control problem see
for instance [9] and references therein. Most of the work on application of game
theory to power control considers mobile terminals as players of the same type.
Here we consider the jamming problem with two types of players. The first type
of players are regular users of the wireless mobile network who want to use the
available wireless channels in the most efficient way. The second type of players
are jammers who want to prevent or to jam the communication of the regular
users. The study of jamming in wireless networks is important in the context of
military actions or fighting against terrorist activity. On a battlefield, it is very

� The work was partially supported by the European Research Grant BIONETS and
by RFBR and NNSF Grant no.06-01-39005.

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 E. Altman, K. Avrachenkov, and A. Garnaev

likely that one side will try to prevent the wireless communication of the other
side. Thus, one side is interested in the best usage of power to overcome the
artificial noise emitted by the other side. And conversely, the other side tries to
use power to harm the communication in the most efficient way.

In [2] the authors have studied the application of dynamic stochastic zero
sum game to the jamming problem in wireless networks. In the model of [2] the
transmission power can be chosen from a discrete set. Here we suppose that the
power level can be chosen from a continuous set. This allows us not only to prove
the existence of the Nash equilibrium (NE) but also to show its uniqueness. Here,
in addition to the power constraint we introduce the cost of power usage. This
makes the problem a non-zero game. Furthermore, the current continuous model
allows us to study not only temporal power distribution for one channel but also
the distribution of power among different sub-channels.

In the works [7] and [14] the authors have analyzed the worst case wireless
channel capacity when the noise variances are fixed (possibly unknown at the
transmitter) and the carrier gains are allowed to vary while verifying a certain
constraint. In that case, transmission at the worst rate guarantees error free com-
munication under any possible conditions of the channel, although it might give
a pessimistic result. This formulation leads to a minimax problem. In the works
[7] and [14] as well as in [2] the cost of transmission is not taken into account.
Other problem formulations involving jamming in which one wireless terminal
wishes to maximize the mutual information and the other tries to minimize it,
can be found at [3]. For other related work, see [5].

Let us specify the present model formulation. We consider two mobile termi-
nals and one base station. Since we use the framework of game theory, we shall
use the terms mobiles and players interchangably. Player 1 seeks to transmit
information to the base station. We shall refer to it as “Transmitter”. Player 2
has an antagonistic objective: to prevent or to jam the transmissions of Player 1
to the base station. Thus, we shall call Player 2 “Jammer”. Both players have in
addition a transmission cost (see below) which prevents us from using zero-sum
games to model our problem.

We assume that there are n independent resources, each of which can be
used simultaneously by both players. We further assume that resource i has a
”weight” of πi.

Possible interpretations
(i) The resources may correspond to capacity available at different time slots; we
assume that there is a varying environment whose state changes among a finite
set of states i ∈ [1, n], according to some ergodic stochastic process with station-
ary distribution {πi}ni=1. We assume that both players have perfect knowledge
of the environment state at the beginning of each time slot.
(ii) The resources may correspond to frequency bands (e.g. as in OFDM) where
one should assign different power levels for different sub-carriers [15]. In that
case we may take πi = 1/n for all i.

The pure strategy of Transmitter is T = (T1, . . . , Tn) where Ti ≥ 0 for i ∈ [1, n]
and

∑n
i=1 πiTi ≤ T̄ where T̄ > 0, πi > 0 for i ∈ [1, n]. The component Ti can
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be interpreted as the power level dedicated to resource of type i. If the resource
i is the available capacity when the environment state is i, then Ti is the power
level that is chosen whenever we visit state i, and T̄ is a bound on the power
averaged over time.

If the resources correspond to frequency bands, then Ti is the average power
to be transmitted at the ith band. T̄ is then the maximal average power level
that can be used by Transmitter.

The pure strategy of Jammer is N = (N1, . . . , Nn) where Ni ≥ 0 for i ∈ [1, n]
and

∑n
i=1 πiNi ≤ N̄ where N̄ > 0. The payoffs to Transmitter and Jammer are

given as follows

vT (T, N) =
n∑

i=1

πi ln
(

1 +
giTi

hiNi + N0
i

)

− cT

n∑

i=1

πiTi,

vN (T, N) = −
n∑

i=1

πi ln
(

1 +
giTi

hiNi + N0
i

)

− cN

n∑

i=1

πiNi

(1)

where N0
i is the power level of the uncontrolled noise of the environement at state

i, cT > 0 and cN > 0 are the costs of power usage for Transmiter and Jammer,
and gi > 0 and hi > 0 are fading channel gains for Transmiter and Jammer
when the environement is in state i. The first sum in payoff is the expected
value of the Shanon capacity [6,10,15] and the second sum is the average cost of
transmission.

We shall look for a NE, that is, we want to find (T ∗, N∗) ∈ A×B such that

vT (T, N∗) ≤ vT (T ∗, N∗) for any T ∈ A,

vN (T ∗, N) ≤ vN (T ∗, N∗) for any N ∈ B,

where A and B are the sets of all the strategies of Transmitter and Jammer,
respectively. In particular, we shall prove that the NE exists and is unique and
we shall provide closed form analytic expressions for its calculation.

In the special case when cT and cN are zero in (1), the game is zero-sum. As
vT is convex in Ti and concave in Ni, we can apply Sion’s minimax Theorem to
conclude that it has a saddle point.

The structure of the paper is as follows: To complete the picture and to intro-
duce notations, in Section 2 we consider single player water-filling game with the
environment when the transmission cost is taken into account. Section 3 is the
main part of the paper where we study the structure of the NE in the jamming
game. Then, in Section 4, based on theoretical results of Section 3, we provide
an algorithm for determination of the NE. We study some numerical examples in
Section 5 and make conclusions in Section 6.

2 Water-Filling with Transmission Cost

In this section we consider the following single person game with the environ-
ment. There is one player named Transmitter. He/she wants to send informa-
tion through a channel which state depends on the state of the environment
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or through n sub-channels. The goal of Transmitter is to maximize the sending
rate of the transmitted information and to minimize the transmission cost. The
pure strategy of Transmitter is T = (T1, . . . , Tn) where Ti ≥ 0 for i ∈ [1, n] and∑n

i=1 πiTi ≤ T̄ where T̄ > 0 and πi > 0 for i ∈ [1, n]. The payoff to Transmitter
is given as follows

v(T ) =
n∑

i=1

πi ln
(

1 +
Ti

N0
i

)

− cT

n∑

i=1

πiTi,

where N0
i > 0 is the noise level when the environment is in state i, i ∈ [1, n]

and cT is a cost for power usage. We would like to emphasize that this is a
generalization of the standard water-filling scheme, see e.g., [8,13,15]. Following
the standard water-filling approach we can get the following result.

Theorem 1. Let 1/N0
1 = maxi∈[1,n] 1/N0

i and Ti(ω) =
[
1/(cT + ω)−N0

i

]
+

for
i ∈ [1, n] and HT (ω) =

∑n
i=1 πiTi(ω).

If cT ≥ 1/N0
1 then T ∗ = (0, . . . , 0) is the unique optimal strategy and its

payoff is 0. If cT < 1/N0
1 then T (ω∗) = (T1(ω∗), . . . , Tn(ω∗)) is the unique

optimal strategy and its payoff is v(T (ω∗)) where for HT (0) ≤ T̄ ω∗ = 0 and for
HT (0) > T̄ ω∗ is the unique root of the equation HT (ω) = T̄ .

3 Jamming Game

In this section we consider a non-zero-sum game between Transmitter and Jam-
mer with payoff functions defined by (1). We shall study the NE of this game,
that is, we want to find (T ∗, N∗) ∈ A×B such that

vT (T, N∗) ≤ vT (T ∗, N∗) for any T ∈ A,

vN (T ∗, N) ≤ vN (T ∗, N∗) for any N ∈ B,

where A and B are the sets of all the strategies of Transmitter and Jammer,
respectively.

Note that

∂2vT (T, N)
∂T 2

i

= − πig
2
i

(giTi + hiNi + N0
i )2(hiNi + N0

i )2
< 0

and
∂2vN (T, N)

∂N2
i

= − πiTigih
2
i (giTi + 2hiNi + 2N0

i )
(giTi + hiNi + N0

i )2(hiNi + N0
i )2

< 0.

Thus, vT and vN are concave in T and N respectively. So, we can apply the
Kuhn-Tucker Theorem to find the form that the NE has, namely, we will show
in Theorem 3 that each NE is of the form (T (ω, ν), N(ω, ν)) for some nonnegative
ω and ν where T (ω, ν) and N(ω, ν) are given in closed form in (5) and (6). These
functions have a nice monotonous properties established in Lemma 1, namely,
N(ω, ν) is decreasing in ω and ν and T (ω, ν) is decreasing in ω and is increasing
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in ν. This properties allow us to prove in Theorem 4 that there is at most one NE.
Then, based on the monotonous properties of T (ω, ν) and N(ω, ν), we produce a
NE in Theorems 5 and 6 in a way where the original two parametric problems in
ω and ν reduces to one parametric problem either in ω or in ν where the optimal
values of ω and ν can be found from solution of an equation with monotonous
function. This in turn allows us in Section 4 to produce an effective algorithm
based on the bisection method for numerical determination of NE.

Now we can pass on to our analysis. As it was noticed vT and vN are concave
in T and N , thus, the Kuhn - Tucker Theorem implies the following theorem.

Theorem 2. (T ∗, N∗) is a NE if and only if there are non - negative ω and ν
such that

∂

∂Ti
vT (T ∗, N∗) =

gi

giT
∗
i + hiN

∗
i + N0

i

− cT

{
= ω for T ∗

i > 0,

≤ ω for T ∗
i = 0,

(2)

∂

∂Ni
vN (T ∗, N∗) =

gihiT
∗
i

(giT
∗
i + hiN

∗
i + N0

i )(hiN
∗
i + N0

i )

− cN

{
= ν for N∗

i > 0,

≤ ν for N∗
i = 0,

(3)

where

ω

{
≥ 0 for

∑n
i=1 πiT

∗
i = T̄ ,

= 0 for
∑n

i=1 πiT
∗
i < T̄

and ν

{
≥ 0 for

∑n
i=1 πiN

∗
i = N̄,

= 0 for
∑n

i=1 πiN
∗
i < N̄.

(4)

For non-negative ω and ν let

I00(ω, ν) = I00(ω) =
{
i ∈ [1, n] : higi/N

0
i ≤ hi(ω + cT )

}
,

I10(ω, ν) =
{
i ∈ [1, n] : hi(ω + cT ) < higi/N

0
i ≤ hi(ω + cT ) + gi(ν + cN )

}
,

I11(ω, ν) =
{
i ∈ [1, n] : hi(ω + cT ) + gi(ν + cN ) < higi/N

0
i

}
,

Ti(ω, ν) =

⎧
⎪⎪⎨

⎪⎪⎩

gi

(ω + cT )hi + (ν + cN )gi
× ν + cN

ω + cT
for i ∈ I11(ω, ν),

1
cT + ω −

N0
i

gi
for i ∈ I10(ω, ν),

0 for i ∈ I00(ω, ν),

(5)

Ni(ω, ν) =

⎧
⎨

⎩

gi

(ω + cT )hi + (ν + cN )gi
− N0

i
hi

for i ∈ I11(ω, ν),

0 for i ∈ I00(ω, ν).
(6)

Theorem 3. Each NE is of the form (T (ω, ν), N(ω, ν)) for some nonnegative
ω and ν.

Now we go on to finding optimal ω and ν. Let

HT (ω, ν) =
n∑

i=1

πiTi(ω, ν), HN (ω, ν) =
n∑

i=1

πiNi(ω, ν).
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Then Theorem 3 implies that

HT (ω, ν) =
∑

i∈I10

πi

(
1

cT + ω
− N0

i

gi

)

+
ν + cN

ω + cT

∑

i∈I11

πigi

(ω + cT )hi + (ν + cN )gi
,

HN (ω, ν) =
∑

i∈I11

πi

( gi

(ω + cT )hi + (ν + cN )gi
− N0

i

hi

)
.

In the next lemma some monotonous properties of Ti(ω, ν) and Ni(ω, ν),
HT (ω, ν) and HN (ω, ν) are obtained.

Lemma 1. (i) For fixed ω > 0 and 0 ≤ ν1 < ν2 we have: (1) Ti(ω, ν1) ≤
Ti(ω, ν2) where strict inequality holds if and only if i ∈ I10(ω, ν1),
(2) Ni(ω, ν1) ≥ Ni(ω, ν2) where strict inequality holds if and only if i ∈
I10(ω, ν1), (3) HT (ω, ν1) ≤ HT (ω, ν2) where equality holds if and only if
I10(ω, ν1) = ∅, (4) HN (ω, ν1) ≥ HN (ω, ν2) where equality holds if and only
if I10(ω, ν1) = ∅.

(ii) For fixed ν > 0 and 0 ≤ ω1 < ω2 we have: (1) Ti(ω1, ν) ≤ Ti(ω2, ν) where
equality holds if and only if i ∈ I00(ω1, ν), (2) Ni(ω1, ν) ≥ Ni(ω2, ν) where
equality holds if and only if i �∈ I10(ω1, ν), (3) HT (ω1, ν1) ≥ HT (ω2, ν) where
equality holds if and only if I00(ω, ν1) = [1, n], (4) HN (ω1, ν) ≥ HN (ω2, ν)
where equality holds if and only if I10(ω1, ν) = ∅.

(iii) HT (ω, ν) and HN (ω, ν) are non-negative and continuous in [0,∞)× [0,∞).
(iv) If HN (0, 0) ≤ N̄ then HN (ω, ν) < N̄ for ω > 0 and ν > 0.

Based on monotonous properties described in Lemma 1 we can establish the
following result about the number of NE the game can have.

Theorem 4. There is at most one NE.

Note that

HT (ω, 0) =
∑

i∈[1,n]: hi(ω+cT )<higi/N0
i ≤hi(ω+cT )+gicN

πi

(
1

cT + ω
− N0

i

gi

)

+
cN

ω + cT
×

∑

i∈[1,n]: hi(ω+cT )+gicN <higi/N0
i

πi
gi

(ω + cT )hi + cNgi
.

(7)

The following lemma supplying some properties of HT (ω, 0) follows straighfor-
ward from (7) and Lemma 1.

Lemma 2. (i) HT (·, 0) is non-negative and continuous in (0,∞),
(ii) HT (ω, 0) = 0 for enough big ω, namely, for ω ≥ maxi{gi/N

0
i −gicN/hi}−cT ,

(iii) HT (ω, 0) is strictly decreasing on ω while HT (ω, 0) > 0,

Lemma 2 implies that if HT (0, 0) > T̄ that there exists the unique positive ω∗
10

such that HT (ω∗
10, 0) = N̄ (indexes 10 mean that in this moment we look for the

optimal solution where ω > 0 and ν = 0). If HT (0, 0) ≤ T̄ then HT (τ, 0) < T̄
for τ > 0. Then, from Theorems 2 and 3 and Lemmas 1(iv) and 2 we have the
following theorem.



A Jamming Game in Wireless Networks with Transmission Cost 7

Theorem 5. Let HN (0, 0) ≤ N̄ then
(a) if HT (0, 0) ≤ T̄ then (T (0, 0), N(0, 0)) is NE,
(b) if HT (0, 0) > T̄ then (T (ω∗

10, 0), N(ω∗
10, 0) is NE.

By Lemma 1 the following Lemma holds

Lemma 3. If HN (0, 0) > N̄ then there is ν∗
01 such that HN (0, ν∗

01) = N̄ (sub-
script 01 signifies that we look for the optimal solution where ω = 0 and ν > 0)
and there is ω̂ such that HN (ω̂, 0) = N̄ . Thus, HN (ω, ν) < N̄ for each ω > ω̂
and each non-negative ν. For each ω ∈ (0, ω̂] there is unique nonnegative ν(ω)
such that HN (ω, ν(ω)) = N̄ . ν(ω) is continuous and strictly decreasing on ω,
ν(0) = ν∗

01 and ν(ω̂) = 0.

Thus, by Lemma 3 we can introduce the following notation:

H̄T (ω) = HT (ω, ν(ω)) =
∑

i∈I10(ω,ν(ω))

πi

(
1

cT + ω
−N0

i

)

+
ν(ω) + cN

ω + cT
×

∑

i∈I11(ω,ν(ω))

πi
gi

(ω + cT )hi + (ν(ω) + cN )gi
.

Then by Lemma 1 H̄T is continuous and strictly decreasing in (0, ω̂). Thus, if
H̄T (0) ≤ T̄ then H̄T (ω) < T̄ for ω ∈ (0, ω̂). If H̄T (ω̂) > T̄ then H̄T (ω) > T̄ for
ω ∈ (0, ω̂). If H̄T (ω̂) < T̄ and H̄T (0) > T̄ then there is unique ω∗

11 ∈ (0, ω̂) such
that H̄T (ω∗

11) = T̄ (subscript 11 signifies that we look for the optimal solution
where ω, ν > 0). Then, from Theorems 2 and 3 we have the following theorem.

Theorem 6. Let HN (0, 0) > N̄ then
(a) if H̄T (0) = HT (0, ν∗

01) ≤ T̄ then (T (0, ν∗
01), N(0, ν∗

01)) is NE,
(b) if H̄T (0) = HT (0, ν∗

01) > T̄ and H̄T (ω̂) = HT (ω̂, 0) > T̄ then
(T (ω∗

10, 0), N(ω∗
10, 0)) is NE,

(c) if H̄T (0) = HT (0, ν∗
01) > T̄ and H̄T (ω̂) = HT (ω̂, 0) ≤ T̄ then

(T (ω∗
11, ν(ω∗

11)), N(ω∗
11, ν(ω∗

11)) is NE.

Theorems 4 – 6 imply the following main result.

Theorem 7. There is unique NE given by Theorems 5 and 6.

The case where there are no the costs of power usage for Transmiter and Jam-
mer, namely, cT = cN = 0, is an important particular case of our model. For
this case our model from non-zero sum game turns into zero-sum game. Then,
it is clear, that HN (0+, 0+) =∞ and H̄T (0+) = ∞ and we come under condi-
tions of Theorem 6 (b) and (c). Thus, if HT (ω̂, 0) ≤ T̄ (where ω̂ is defined by
equation HN (ω̂, 0) = N̄ , see Lemma 3), then (T (ω∗

11, ν(ω∗
11)), N(ω∗

11, ν(ω∗
11)) is

the equilibrium. If HT (ω̂, 0) > T̄ then (T (ω∗
10, 0), N(ω∗

10, 0)) is the equilibrium.
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4 Algorithm

In this section we present an algorithm based on the bisection method and
Theorems 5 and 6 and Lemmas 2 and 3 to find the optimal values of ω and ν
and the corresponding optimal solution.

Algorithm

Step 1. If HN (0, 0) ≤ N̄ and HT (0, 0) ≤ T̄ then ω = ν = 0 and (T (0, 0), N(0, 0))
is NE and the algorithm is terminated.

Step 2. If HN (0, 0) ≤ N̄ and HT (0, 0) > T̄ . Then call ω∗
10 = BS1

T (0),
(T (ω∗

10, 0), N(ω∗
10, 0)) is NE and the algorithm is terminated.

Step 3. If HN (0, 0) > N̄ then BS1
N (ω̂, 0) and ν∗

01 = BS2
N (0).

Step 4. If HT (0, ν∗
01) ≤ T̄ then (T (0, ν∗

01), N(0, ν∗
01)) is NE and the algorithm

is terminated.
Step 5. If HT (0, ν∗

01) > T̄ and HT (ω̂, 0) > T̄ then (T (ω∗
10, 0), N(ω∗

10, 0)) is NE
and the algorithm is terminated.

Step 6. If HT (0, ν∗
01) > T̄ and HT (ω̂, 0) ≤ T̄ then ω0 = 0, ω1 = ω̂.

Step 6a. ν0 = BS2
N (ω0), ν1 = BS2

N (ω1).
Step 6b. Set ω̄ = (ω1 + ω0)/2.
Step 6c. ν̄ = BS2

N (ω̄).
Step 6d. If ω1 − ω0 ≤ ε, then ω∗

11 = (ω1 + ω0)/2, ν∗
11 = BS2

N (ω∗
11) and

(T (ω∗
11, ν

∗
11), N(ω∗

11, ν
∗
11)) is NE and the algorithm is terminated.

Step 6e. If ω1−ω0 > ε, then, if HT (ω̄, ν̄) < N̄ then ω0 = ω̄, if HN (ω̄, ν̄) >
N̄ then ω1 = ω̄ and go to Step 6b.

Step 6f. Let ω1 − ω0 > ε and HN (ω̄, ν̄) = N̄ then ω∗
11 = ω̄, ν∗

11 = ν̄ and
(T (ω∗

11, ν
∗
11), N(ω∗

11, ν
∗
11)) is NE and the algorithm is terminated.

Function ω = BS1
T (ν)

Step 1. Let ω0 = 0, ω1 = maxi{gi/N
0
i − gicN/hi} − cT

Step 2. Set ω̄ = (ω1 + ω0)/2.
Step 3. If ω1 − ω0 ≤ ε, then return ω = (ω1 + ω0)/2.
Step 4. If ω1 − ω0 > ε then, if HT (ω̄, ν) < T̄ set ω0 = ω̄, if HT (ω̄, ν) > T̄ set

ω1 = ω̄ and go to Step 2.
Step 5. Let ω1 − ω0 > ε and HT (ω̄, ν) = N̄ then return ω̄.

Function ω = BS1
N (ν)

Step 1. Let ω0 = 0, ω1 = maxi{gi/N
0
i − gicN/hi} − cT

Step 2. Set ω̄ = (ω1 + ω0)/2.
Step 3. If ω1 − ω0 ≤ ε then return ω = (ω1 + ω0)/2.
Step 4. If ω1 − ω0 > ε then, if HN (ω̄, ν) < N̄ set ω0 = ω̄, if HN (ω̄, ν) > N̄ set

ω1 = ω̄ and go to Step 2.
Step 5. Let ω1 − ω0 > ε and HN (ω̄, ν) = N̄ then return ω̄.

Function ν = BS2
N (ω)

Step 1. Let ν0 = 0, ν1 = maxi{hi/N
0
i − hicT /gi} − cN



A Jamming Game in Wireless Networks with Transmission Cost 9

Step 2. Set ν̄ = (ν1 + ν0)/2.
Step 3. If ν1 − ν0 ≤ ε then return ν = (ν1 + ν0)/2.
Step 4. If ν1 − ν0 > ε then, if HN (ω, ν̄) < N̄ set ν0 = ν̄, if HN (ω, ν̄) > N̄ set

ν1 = ν̄ and go to Step 2.
Step 5. Let ν1 − ν0 > ε and HN (ω, ν̄) = N̄ then return ν̄.

5 Numerical Examples

In this section we consider a few numerical examples. The numerical examples
correspond to the OFDM scheme with five sub-channels (n = 5). Consequently,
we take πi = 1/5. Let us consider an important particular case of jamming in the
OFDM system when the jammer is near the base station. In this scenario hi = 1
for all i ∈ [1, 5]. First, we take gi = κi−1 for i ∈ [1, 5] where κ ∈ (0, 1). This
corresponds to Rayleigh fading. Also we set N0

i = 0.1, i ∈ [1, 5], N̄ = T̄ = 1 and
cT = cN = 0.1. The payoffs of the players as functions of κ is shown in Figure 1.
As an example, we depict the optimal strategies of the players in Figure 2 for
the case κ = 1/2. It is interesting to observe that Jammer spends more energy
in the sub-channels with good quality and Transmitter tries to use the resources
of the bad quality sub-channels. In other words, Jammer pays less attention to
the sub-channel with bad quality and Transmitter takes an opportunity to send
some part of information over bad quality sub-channels.

In the second example, we consider that the background noise is different
in each sub-channel. Specifically, we take N0

i = i/10 for i ∈ [1, 5] and κ =
0.2. Then, we obtain the optimal strategies T ∗ = (3.66, 1.18, 0.16, 0, 0) and
N∗ = (3.90, 1.10, 0, 0, 0) with the payoffs 0.07 and -0.27. This example illustrates
the possibility of the situation when Transmitter uses more sub-channels than
Jammer, see formulae (5) and (6).

Fig. 1. The payoffs as functions of κ Fig. 2. The optimal strategies for κ = 1/2
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6 Conclusions

In this paper we considered jamming in wireless networks with transmission
cost for both transmitter and jammer from a game theoretical point of view. We
proved the existence and uniqueness of NE. It turned out that it is possible to
provide analytical expressions for the equilibrium strategies which depend on two
parameters. We propose an efficient algorithm for finding these parameters, and
hence, the optimal strategies. The presented jamming game is a generalization of
the standard water-filling problem. In fact, since we take into account the cost of
transmission, for the case of the single player, we obtain even the generalization
of the water-filling optimization problem. The present framework allows us to
study both water-filling in time and water-filling in frequency. By means of
numerical examples we study an important particular case of jamming of the
OFDM system when the jammer is situated close to the base station. These
examples showed that Jammer pays less attention to the sub-channel with bad
quality and Transmitter takes an opportunity to send some part of information
over bad quality sub-channels.
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Appendix

Proof of Theorem 3. Let (T ∗, N∗) be a NE. Then for each i ∈ [1, n] the
following four cases are possible: (a) T ∗

i = N∗
i = 0, (b) T ∗

i = 0, N∗
i > 0, (c)

T ∗
i > 0, N∗

i > 0 and (d) T ∗
i > 0, N∗

i = 0.
(a) Let T ∗

i = 0 and N∗
i = 0 then by (2) we have that gi/N

0
i − cT ≤ ω∗. Thus,

i ∈ I00(ω∗, ν∗) and T ∗ = T (ω∗, ν∗), N∗ = N(ω∗, ν∗).
(b) Let T ∗

i > 0 and N∗
i = 0 then by (2) we have that

gi

giT
∗
i + N0

i

− cT = ω∗.

Thus, gi

N0
i

> ω∗ + cT and T ∗
i = 1

ω∗ + cT
− N0

i
gi

. Then, by (3) we have that

ν∗ ≥ gihiT
∗
i

(hiT
∗
i + N0

i )N0
i

− cN =
(

1
ω∗ + cT

− N0
i

gi

)
hi

N0
i

(ω∗ + cT )− cN

=
hi

N0
i

− hi

gi
(ω∗ + cT )− cN .

Thus, i ∈ I10(ω∗, ν∗) and T ∗ = T (ω∗, ν∗), N∗ = N(ω∗, ν∗).
(c) Let T ∗

i > 0 and N∗
i > 0 then by (2) and (3) we have that

ω∗ =
gi

giT
∗
i + hiN

∗
i + N0

i

− cT ,

ν∗ =
gihiTi

(giT
∗
i + hiN

∗
i + N0

i )(hiN
∗
i + N0

i )
− cN .

(d) Let T ∗
i = 0 and N∗

i > 0 then by (3) ν∗ = −cN < 0. This contradiction
proves that the assumption that T ∗

i = 0 and N∗
i > 0 cannot take place and the

result follows.

Proof of Lemma 1. (i1) For fixed ω > 0 and 0 ≤ ν1 < ν2 we have I10(ω, ν1) ⊆
I10(ω, ν2) and I11(ω, ν1) ⊇ I11(ω, ν2). Since for any ν I10(ω, ν) ∪ I11(ω, ν) =
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[1, n]\I00(ω) does not depend on ν we have to consider separately the cases
i ∈ I00(ω, ν1), i ∈ I10(ω, ν1), i ∈ I11(ω, ν2) and i ∈ I11(ω, ν1) ∩ I10(ω, ν2), and
then (i1) now follows easily from the definitions.

Proof of Theorem 4. Suppose there are at least two NE, say (T (ω1, ν1),
N(ω1, ν1)) and (T (ω2, ν2), N(ω2, ν2)).

Suppose that ν1 = ν2 = ν. We can assume that 0 ≤ ω1 < ω2. Thus, by
Theorem 2, HT (ω2, ν) = T̄ . Thus, by Lemma 1 (ii3) HT (ω2, ν) ≤ HT (ω1, ν)
So, HT (ω1, ν) = T̄ = HT (ω2, ν) and by Lemma 1 (ii3) I00 = [1, n]. Thus,
HT (ω2, ν) = 0. This contradictions shows ω1 has to be equal to ω2.

Suppose that 0 ≤ ν1 < ν2 = ν. Thus, by Theorem 2, HT (ω2, ν2) = N̄ . So,
I11(ω2, ν2) �= ∅.

Assume that ω1 ≤ ω2. Then I11(ω2, ν2) ⊆ I11(ω1, ν1) and Ni(ω1, ν1) >
Ni(ω2, ν2) for i ∈ I11(ω2, ν2). Thus, HN (ω1, ν1) > HN (ω2, ν2) = N̄ . This contra-
diction shows that the inequality ω1 > ω2 has to be held.

So, let ω1 > ω2. Thus, I00(ω2) ⊆ I00(ω1). We can assume that I00(ω2) �= [1, n]
since otherwise the equilibrium coincides with each other, namely Ti(ωk, νk) =
Ni(ωk, νk) = 0 for k = 1, 2. So, I00(ω2) �= [1, n]. Thus, by Lemma HT (ω2, ν2) ≥
HT (ω2, ν1) > HT (ω1, ν1) = T̄ . This contradiction completes the proof of
theorem.
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Abstract. The Tit-for-Tat strategy implemented in BitTorrent (BT)
clients is generally considered robust to selfish behaviours. The authors
of [1] support this belief studying how Tit-for-Tat can affect selfish peers
who are able to set their upload bandwidth. They show that there is a
“good” Nash Equilibrium at which each peer uploads at the maximum
rate. In this paper we consider a different game where BT clients can
change the number of connections to open in order to improve their per-
formance. We study this game using the analytical framework of network
formation games [2]. In particular we characterize the set of pairwise sta-
ble networks the peers can form and how the peers can dynamically reach
such configurations. We also evaluate the loss of efficiency peers experience
because of their lack of coordination: we find that the loss of efficiency is
in general unbounded despite the utilization of the Tit-for-Tat strategy.

1 Introduction

Recently peer-to-peer applications (e.g., BitTorrent [3], Kazaa, eDonkey, and
Gnutella [4]) have become very popular. CacheLogic [5] estimates that peer-to-
peer generated 60% of all US Internet traffic at the end of 2004 and in particular
BitTorrent (BT in what follows), constituted about 30% of Internet backbone
traffic in June 2004.

One of the reason of BT success is its ability to enforce cooperation among
the peers contrasting the well know problem of free-ride. In fact all the peers
interested in a specific file have to announce themselves to a central server,
called tracker. The tracker maintains the set of active peers, also called the
swarm, interested in that content and communicates a small random subset of
peers from the swarm to each new peer. Peers use this subset to connect to
other peers and exchange missing pieces of the file. In general a peer receives
many requests for different pieces. In order to decide which requests should be

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 13–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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satisfied, the peer uses the Tit-for-Tat strategy: it uploads to the nu peers (the
default value is 4) from which it can download at the highest rate, i.e., its best
uploaders. This strategy is clearly intended to benefit the peers who contribute
more to the system.

Tit-for-Tat is generally considered robust to selfish behaviour. To the best of
our knowledge, the only analytical support to this belief is in [1]. The authors
of [1] study how Tit-for-Tat can affect selfish peers who can change their upload
bandwidth in order to try to maximize their downloading rate. We refer to their
model as the rate game. Under several assumptions, they show that there is a
good NE at which each peer uploads at the maximum rate (their model and their
results are discussed in more detail in Section 2). However, we observe that BT
clients can also change the number of connections to open in order to improve
their performance and achieve better performance.

In order to study this aspect we have introduced a new model, which we refer
to as the connection game. This model captures Tit-for-Tat reciprocation feature
by considering that two peers set up a connection between themselves only when
they both find it beneficial. We study this game using the analytical framework
of network formation games [2]. In Section 3 we characterize the topologies of
some pairwise stable networks peers can form both in homogeneous scenarios
and in heterogenous scenarios (i.e. respectively when all the links have the same
or different capacity values). In Section 4 we evaluate the loss of efficiency peers
experience because of their lack of coordination: we find that the loss of efficiency
is in general unbounded despite the utilization of the Tit-for-Tat strategy. Fi-
nally in Section 5 we propose a simple dynamics for this game. We prove that
when connection costs are linear functions of the number of links, this dynamics
converges to a pairwise stable network. We also quantify by simulations the con-
vergence time and show that as the network size increases the dynamics leads
to networks near to the equilibria described in Section 3.

The results about pairwise stable networks in the homogeneous scenario have
already been presented in [6]. This paper presents a new result about the hetero-
geneous scenario and illustrates extensively the results about the dynamics which
were just listed in [6]. To the best of our knowledge only three other papers [7,8,9]
use game theory to study the overlay structure arising from the interaction among
selfish peers . In these papers peers build an overlay to provide connectivity. The
cost of each peer is the sum of the lengths of the shortest paths to all the other
peers plus the cost of the links created to connect to the neighbours.

Due to space constraints, proofs are in [10].

2 The Rate Game

Before illustrating the results about Tit-for-Tat we describe in detail the network
model considered in [1], because we adopt the same. According to this model
every peer has two asymmetric access links to the Internet: one downstream link
and one upstream link. Besides it is assumed that bottlenecks can occur only
at upstream links. These assumptions are supported by measurement studies
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(e.g. [11]): most peers in current peer-to-peer networks use cable modem or ADSL
to get connected to the Internet and usually the data throughput is limited by
the “last mile” and the downstream link has higher capacity than the upstream
link [11]. Thus, in the star network shown in Figure 1, the Internet cloud can be
represented simply as a central node.

A peer r uses its downstream link to get data from other peers. The downstream
link of peer r is a “private” link in the sense that this link is only used by peer r
itself. On the other hand, the upstream link of peer r is equally shared by all other
peers that are downloading files from peer r. We can think of the upstream link
of peer r as a “public” link from the point of view of peer r. The model ignore the
content dynamics, because it assumes that every peer has potentially interesting
data for every other peer and all possible connections can be established.

The authors of [1] study how Tit-for-Tat can affect selfish peers who are
able to set their uploading bandwidth in a BT network. Due to Tit-for-Tat
reciprocation mechanism, the downloading rate each peer gets is an increasing
function of its uploading bandwidth. The authors assume that each peer sets its
uploading bandwidth at the minimum level which guarantees them the maximum
downloading rate they can achieve, i.e., the downloading rate they would get by
uploading at their physical uploading bandwidth.1 They also assume that the
network has a finite number of groups of peers, each of them characterized by
a different physical uploading bandwidth and with at least nu + 2 peers. Under
these assumptions the authors show that there is a single good Nash equilibrium
point at which each peer uploads at the maximum rate. Note that in [1], for a
given peer, the total number of other peers to set up a connection with is fixed.
However, we observe that BT clients can benefit from changing their number of
connections (an example is shown in [6]).

3 The Connection Game

In this section, we first formally introduce our game then we study the net-
work equilibria arising in this game using the analytical framework of network
formation games [2].
1 In reality they need to assume that each peer sets its bandwidth to a value slightly

larger than such minimum, otherwise there would be multiple Nash equilibria.
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Assumptions are detailed in the previous section. We refer to peers as players
and to connections as links. Let R = {1, 2, · · · , R} denote the set of players. The
strategy of a player i is the set of intended connections player i wants to establish,
which is denoted by si = {si,j | j ∈ R\{i}}, where si,j = 1 means that player i
intends to create a link (open a connection) with player j and si,j = 0 means that
player i does not intend to create such a link. With the Tit-for-Tat strategy, both
players have to agree in order to create a link, hence a link between players i and
j is formed if and only if si,j = sj,i = 1. A strategy profile s = {s1, s2, · · · , sR}
therefore induces a network g(s) = {gi,j , i, j ∈ R}, where gi,j = 1 denotes the
existence of link (i, j) and gi,j = 0 denotes the absence of link (i, j). Given a
network g, we use g+gi,j or g−gi,j to denote the network obtained by adding or
severing the link (i, j). We also let Ni(g) = {j ∈ R : j �= i, gi,j = 1} be the set of
player i’s neighbors in graph g, and let ni(g) = |Ni(g)|. A network is symmetric
if ni(g) = n, ∀i ∈ R, i.e. its topology is a regular graph (all players have the
same number of connections).

The payoff or benefit of player i is given by its download rate minus the cost
of opening connections: Bi = Gi − Φi(ni) =

∑
j∈Ni(g) Cj/nj − Φi(ni), where Cj

is the uploading capacity of peer j. We assume that Φi is a convex function of
ni (a linear function is a particular case). The marginal benefit for player i to
open a new connection with player j is:

bi(ni(g), nj(g)) = Bi(g + gi,j)−Bi(g) =
Cj

nj(g) + 1
− Φi(ni(g) + 1) + Φi(ni(g)).

A connection between two players can be set up only when both of them find
this connection beneficial. This coordination requirement makes the concept of
Nash equilibrium (NE) partially inadequate. To address this issue, the idea of NE
has been supplemented with the requirement of pairwise stability [12], described
below.

Definition 1. A network g is a pairwise equilibrium network (PEN) if the fol-
lowing conditions hold: 1) there is a NE strategy profile which supports g; 2) for
gi,j = 0, Bi(g + gi,j) > Bi(g)⇒ Bj(g + gi,j) < Bj(g).

3.1 Equilibria in Homogeneous Networks

In this section we consider homogeneous networks in which all peers have the
same upload capacity and payoff function.

Based on the previous assumptions, our game is the local spillovers game
with strategic substitutes properties studied in [13]. Some of the following results
(Theorems 1, 2 and 4) can be derived from [13]. Please see Appendix IV in [10]
for details.

Theorem 1. If the number of players is even, a symmetric PEN always exists.
Specifically, if b(0, 0) ≤ 0, the empty network is a PEN; if b(r − 2, r − 2) ≥ 0,
the complete network is a PEN; if b(k, k) ≤ 0 ≤ b(k−1, k−1), the regular graph
with degree k is a PEN. When the previous inequalities are strict, the degree of
the PEN is unique.
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Remark. Even when a symmetric network can arise from player interaction
according to Theorem 1, the degree of the network is in general different from the
default value used in current BitTorrent implementation (nu = 4). This means
that the symmetric network created by compliant peers in BitTorrent networks
is not in general a PEN for our overlay formation game.

Besides symmetric PENs discussed in the above, we have the following theo-
rem addressing asymmetric PENs.

Theorem 2. There can be at most one player not connected to any other players
in a PEN and the rest of the network is a symmetric network of a unique degree.
In asymmetric networks with a single component, if two players with the same
number of connections k (i.e. two nodes with the same degree k) are connected
to each other, then any two players with fewer number of links than k (or two
nodes with lower degrees than k) must be mutually connected.

Theorem 3. In a scenario where a unique degree -h- is possible for the sym-
metric PENs, there can be at most h players with degree smaller than h. Say l
the number of players with degree smaller than h, there can be at most (h− l)l
players with degree bigger than h, each of them with degree at most h + l. If the
cost function is linear then there are no players with degree bigger than h.

Remarks. The two theorems above rule out many possible asymmetric net-
works, like those with two or more isolated players or interlinked stars.2 Note
that the degree of symmetric PENs h depends only on the cost function Φ() and
the capacity C, and is independent from the number of players R. Because of
these theorems the distance between a PEN and a symmetric PEN is bounded
and becomes less significant as the number of players R increases. Formally:

lim
R→∞

1
R

E

{
R∑

i=1

|ni(gPEN )− h|
}

= 0.

Similarly the average payoff per player in a PEN converges to that of a symmetric
PEN.

The following result shows that players having more connections gain higher
payoffs than other players.

Theorem 4. Let g be a pairwise equilibrium network in which ni(g) < nj(g). If
∀u ∈ Ni(g), ∃v ∈ Nj(g) s.t. nu = nv, then Bi(g) < Bj(g).

Note that if player i’s neighborhood is included in player j’s neighborhood
(Ni ⊂ Nj), the condition “∀u ∈ Ni(g), ∃v ∈ Nj(g), s.t. nu = nv” is satisfied.

2 An interlinked star network has a maximally connected group and a minimally con-
nected group of players. In addition, the maximally connected players are connected
to all players while the minimally connected group has links only with the players
in the maximally connected set.



18 G. Neglia et al.

3.2 Equilibria in Heterogeneous Networks

In this section we consider that peers can have different uploading capacities.
Given Ci the capacity of node i, let us indicate ki a possible node degree in a
symmetric PEN when all players have capacity Ci. The following result holds.

Theorem 5. Under linear costs (Φ(ni) = αni) if in network g each player i has
degree ki, then the network is a PEN.

Sketch of the proof. We only consider the case 0 < ki < R−1. Let us consider
gi,j . If gi,j = 1 then both bi(ki − 1, kj − 1) ≥ 0 and bj(kj − 1, ki− 1) ≥ 0 have to
be satisfied in order to g be a PEN. bi(ki − 1, kj − 1) = Cj/kj − α ≥ 0 because
kj is the degree of a symmetric PEN when all the peers have capacity Ci (see
Theorem 1), similarly for bj(kj − 1, ki − 1). If gi,j = 0 then we just observe that
no player wants to create the link. For example bj(kj , ki) ≤ 0 again because of
the result in Theorem 1.

Remarks. First, note that this theorem, differently from Theorem 1 does not
state the existence of a PEN. Depending on the values of the capacities, it could
be impossible to create a network where all the players open ki connections (for
example if the number of players and the values ki are odd). Second, the result
does not hold in general under different cost functions (it is possible to show
examples), here it is fundamental that the marginal benefit depends only on the
number of connections of the other player. Third, in this PEN the distribution
of the number of connections in the network mainly reflects the distribution of
the capacities. In Section 5 we will show how the PEN selected by the dynamic
process we will introduce is “near” to the PEN described in this theorem, and
hence the distribution of the number of links resembles the distribution of the
capacities in the network.

4 Loss of Efficiency of Symmetric Equilibria

In our game, given the number of players, the number of possible overlays players
can create is finite. Hence there is one network gopt with the highest total payoff∑

i∈R Bi(gopt). We define the efficiency loss of a PEN g as the ratio of the highest
total payoff over the total payoff of the PEN:

Leff (r, C, Φ) =
∑

i∈R Bi(gopt)
∑

i∈R Bi(g)
.

We note that Leff depends in general on the number of players, and the upload ca-
pacities and cost functions of those players. The following theorem states that Leff

is unbounded even for the class of linear connection cost functions (Φ(n) = αn).
Therefore, the price of anarchy (the worst efficiency loss of all NEs) is infinite.3

Please see Appendix VI in [10] for a detailed proof.
3 This is different from what happens for selfish routing, where the price of anarchy is

finite, and independent from the network topology for networks in which edge latency
does not depend in a highly nonlinear fashion on the edge congestion [14].
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Theorem 6. For the class of linear connection cost functions, the loss of effi-
ciency is unbounded: given an even number of players and an upload capacity C,
∀M ∈ R, ∃α∗ ∈ R

+ s.t. Leff (r, C, Φ∗) > M , where Φ∗(n) = α∗n.

5 Dynamic Models

We investigate in this section how peers can dynamically reach a PEN. Here we
consider linear costs (Φ(ni) = αni). We consider the following dynamic discrete-
time process. Starting from an empty network, at each time a player pair (i,j) is
randomly chosen. Link (i, j) is created (or kept) if both players find it beneficial.
An existing link is removed if at least one of the two players of that link does not
find it useful. We are going to show that this dynamic process always reaches a
PEN.

Let us introduce some terminology according to [2]. A network g′ is adjacent
to a network g if g′ = g + gi,j or g′ = g − gi,j for some pair (i, j). A network
g′ defeats another network g if either g′ = g − gi,j and Bi(g′) > Bi(g), or
g′ = g+gi,j with Bi(g′) ≥ Bi(g) and Bj(g′) ≥ Bj(g) with at least one inequality
holding strictly. A network game exhibits no indifference if for any two adjacent
networks, one defeats the other.

According to this terminology in the dynamic process we described above,
the current network is altered if and only if the addition or deletion of a link
would defeat the current network. The process leads to an improving path, i.e.
a sequence of networks g1, g2, ..., gK where each network gk is defeated by the
subsequent (adjacent) network gk+1. There are two kind of improving paths:
those exhibiting cycles (which have infinite length) and those terminating with a
PEN (called stable state). The following lemma (a theorem in [15]) characterizes
when there are no cycles and pairwise stable networks exist.

Lemma 1. Given G the set of all the possible networks g, if there exists a real
valued function w : G→ R such that “g′ defeats g” if and only if “w(g′) > w(g)
and g′ and g are adjacent”, then there are no cycles. Conversely, if the network
game exhibits no indifference, then there are no cycles only if there exists a
function w : G→ R such that “g′ defeats g” if and only if “w(g′) > w(g) and g′

and g are adjacent”.

Based on this lemma, we have the following result.

Theorem 7. If the connection cost function is a linear function Φ(n) = αn, the
dynamic process introduced in this section always reaches a PEN.

Sketch of the proof. If h ∈ {0, 1, · · · , R − 1} is the degree of a symmetric
equilibrium according to Theorem 1 and b(h, h) < 0 for h �= R− 1, the following
function w : G→ R, w(g) = −∑R

i=1 f(ni), where f(ni) = h−ni, if h ≥ ni, and
f(ni) = R(ni − h) otherwise, satisfies the relation in Lemma 1 for our overlay
formation game, hence the dynamic process always reaches a PEN. If h �= R− 1
and b(h, h) = 0, it is possible to define another function satisfying the relation
in Lemma 1. The details of the proof are in Appendix VIII in [10].
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5.1 Simulation Results

We present some simulation results. We considered a number of players ranging
from 100 to 10000, having the same capacity, and α = 0.245, for which the degree
of a symmetric PEN is 4. For each setting we simulated 5000 runs of the above
dynamic process. Each run terminates with a PEN. For this PEN we denote the
average degree over all players as davg.

Figure 2 shows the minimum and the mean of davg over all the runs. We see
that as R increases both the mean and the minimum converge to 4. This result
confirms Theorem 3: as R increases the PENs converge to a symmetric one.

In Figure 3, the mean and the minimum of the total benefit are compared
with the highest total benefit, which can be directly evaluated from the results
in Appendix VII of [10]. This figure shows also the convergence of the payoffs of
all PENs to the payoff of the symmetric PEN when R increases.

In addition, we present the number of iterations per peer in Figure 4. We
observe that the average number of iterations to reach a PEN is of the order
of R2 and hence the number of iteration per peer is of the order of R. Let us
consider this number of iterations in the context of BitTorrent (BT) [3]. Each
peer in a BT network tries to replace an existing connection with a new, bet-
ter connection every 10 seconds. All peers do such replacement simultaneously,
unlike the sequential replacement in our simulations. So R2 iterations in our
simulations corresponds to 10R seconds in a BT network. For a population of
100 peers, the time needed to reach a PEN is of the order of 17 minutes, which
is faster than the typical average time between changes in the population of
peers (due to arrivals or departures). Figure 5 shows how the average and the
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minimum degrees change during two simulation runs respectively for R = 100
and for R = 1000. The initial values are equal to 0 and converge to 4. The time
scale represents time in a BT network; namely, R iterations are represented by
10s. We can observe that: 1) with this time scale the evolution of the average
degree seems independent from the number of players; 2) the network converges
quite rapidly to the PEN. In particular, the average degree reaches 3.8, i.e. 95%
of the final value, after less than 80 seconds in both cases, or, equivalently, after
less than 800 iterations for R = 100 and less than 8000 for R = 1000. Figure 6
shows the time evolution of the process as regards the total benefit. We note
that for both runs, as the process begins the total benefit grows because of the
high benefit of the initial connections, while it falls down to the expected value
when the network approaches the equilibrium.

Finally, we considered heterogeneous scenarios where players have different
upload capacities. The simulations show that at the final equilibrium almost all
the players open a number of connections equal to that indicated by Theorem 5.
For example we considered a network with 1000 players and α = 0.245, where
50% of the nodes have capacity equal to 1, 30% have capacity equal to 2, and
20% have capacity equal to 4. The corresponding degrees in symmetric networks
(ki in Section 3.2) are respectively 4, 8, 16. In the PEN the fraction of nodes
having a degree smaller than the corresponding ki is on average equal to 0.15%
of the total number of nodes, hence the degree distribution closely resembles the
capacity distribution.

6 Conclusions

We studied the Tit-for-Tat strategy (built in BitTorrent [3]) through network
formation games framework. We proved the existence of equilibrium overlays,
and demonstrated the convergence of a simple game dynamics. Although the
general belief is that the Tit-for-Tat can prevent selfish behavior, we showed
that it can still lead to an unbounded loss of efficiency.
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Abstract. We consider a collision channel, shared by a finite number
of self-interested users with heterogenous throughput demands. It is as-
sumed that each user transmits with a fixed probability at each time slot,
and the transmission is successful if no other user transmits simultane-
ously. Each user is interested in adjusting its transmission rate so that its
throughput demand is met. When throughput requirements are feasible,
we show that there exist two equilibrium points where users satisfy their
respective demands. In one equilibrium all users transmit at lower rates,
compared to their transmission rates at the other equilibrium. This fact is
meaningful in wireless systems, where lower transmission rates translate
to power savings. Subsequently, we propose a distributed scheme that
ensures convergence to the lower-rate equilibrium point. We also provide
some lower bounds on the channel throughput that is obtained with
self-interested users, both in the symmetric and non-symmetric case.

1 Introduction

1.1 Background and Motivation

As wireless networks become larger, it may be impractical to have a central
authority (such as a base station) coordinate between wireless stations (which
share the same communication medium) for better network utilization. Thus,
random access, ALOHA-like protocols are often used (for example in the 802.11x
standards). The incorporation of such protocols in wireless systems raises some
novel challenges, as these protocols should consider additional wireless-specific
items such as power control and varying channel conditions (an effect known
as channel fading [1]). Hence, a major research challenge is to examine whether
the distributed nature of random access protocols may lead the network to rea-
sonable working points, thereby coping with additional complexity of wireless
systems.

Since wireless nodes usually do not coordinate in establishing their trans-
mission policies, non-cooperative game theory becomes a natural framework for
analyzing their interaction. Game theoretic tools have been recently applied for
analyzing selfish behavior of users (a “user” stands for a single node or station)
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in Aloha-like random access networks [2,3,4,5,6]. A common ground of most of
these papers, is that users are identical (or symmetric), both in their physical
parameters (such as the arrival rate of packets [4]) and also in their underlying
objective (such as maximizing throughput [4], or minimizing the number of at-
tempted transmissions before success [3]). In practice, however, network users are
heterogenous in nature. For example, video, voice, ftp and e-mail applications,
all have fundamentally diverse QoS requirements. A paper by Jin and Kesidis
[2] does incorporate user heterogeneity, by studying an Aloha-like network with
users who have fixed (and different) throughput demands. Users dynamically
adapt their transmission rates in order to obtain their required throughput de-
mands. It was shown by means of an example that the equilibrium point may
not be unique. Additionally, the authors suggested a dynamic scheme that could
lead to an equilibrium point.

1.2 Paper Organization and Contribution

In this paper we reconsider the model suggested in [2]. A description of the model
is given in Section 2. A detailed equilibrium analysis (complementing missing
analysis in [2]) is provided in Section 3. Our equilibrium analysis reveals, in
particular, that when the rate requirements are within the sustainable region,
there exist exactly two equilibrium points in the resulting game, and that one of
them is strictly better than the other, in the sense that all users transmit at lower
rates (in comparison to their transmission rates at the other equilibrium). This
fact is meaningful in terms of power consumption in wireless systems. We also
show that the equilibrium points can be computed in polynomial time. In the
context of wireless systems, we examine in Section 4 how self-optimizing behavior
affects the network performance. Specifically, we show that the performance gap
(in terms of the total power consumption) between the equilibrium points is
potentially unbounded, and that the better equilibrium point coincides with the
socially-optimal operating point. In Section 5 we present a distributed algorithm
which converges to the better equilibrium. Finally, we provide in Section 6 a
simple lower bound on the channel throughput that can possibly be obtained
with selfish users.

2 Model Description

We consider an ALOHA-like network, shared by a finite set of users I = {1, . . . , n}
who transmit data over a shared collision channel (e.g., wireless stations who
transmit to a common base station). Time is slotted, in the sense that all trans-
mitted packets have the same length and require the same time interval (a slot)
for transmission. Moreover, all transmissions start at the beginning of a slot and
end before the next slot. We assume that a transmission is successful only if no
other user attempts transmission simultaneously.

Each user i is characterized by a throughput ρi (in packets per slot) which it
wishes to deliver over the network. We assume that a user always has packets
to send, yet it may postpone transmission, due to the following reasons. First, a
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user need not transmit in every slot when its average throughput is already met,
since it unnecessarily wastes additional resources, such as transmission power.
Second, assume a user transmits at every slot; then other users would raise their
transmission rates as well, and as a consequence packets will endlessly collide.
Hence, each user i chooses a transmission probability pi, which could be regarded
as the transmission rate.

The underlying assumption of our user model is that users are selfish and
do not cooperate in any manner in order to obtain their required throughput
demands. Define ri as user i’s average throughput. Then

ri = pi

∏

j �=i

(1− pj). (1)

Note that the transmission probability of each user affects the throughput of
all other users through the collision channel. This situation establishes a non-
cooperative game [7] between the users. We are interested in the Nash equilib-
rium point of that game. In our context, a Nash equilibrium point is a vector of
user probabilities p = (p1, . . . , pn), such that

ri = pi

∏

j �=i

(1 − pj) = ρi, i ∈ I. (2)

We shall refer to the above set of equations (2) as the equilibrium equations.

3 Equilibrium Analysis

In this section we analyze the Nash equilibrium point (2) of the network. We
start our analysis by considering the number of equilibria.

3.1 Two Equilibria or None

Obviously, if the users’ throughput requirements are too high there would not
be an equilibrium point, since the network naturally has limited capacity. In
case that an equilibrium point does exist, we establish that, generically, there
are exactly two equilibria (which can be computed efficiently). In addition, we
assert that the existence of an equilibrium point could be verified through a
computationally efficient procedure. The main result of this section is presented
below.

Theorem 1. Consider the non-cooperative game whose Nash equilibrium point
is defined in (2). There are either one, two Nash equilibrium points or none for
that game. The case of a single equilibrium point is non-generic (i.e., occurs only
for a set of rate vectors ρ of measure zero).

Proof. See Appendix.

We summarize certain computability properties in the next proposition (proof
is omitted due to lack of space).
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Proposition 1. The existence of an equilibrium point can be verified in polyno-
mial time (in the number of users). Additionally, in case an equilibrium exists,
both equilibria can be computed in polynomial time (in the number of users).

3.2 Efficiency and Fairness

Besides the existence and the number of equilibrium points, we wish to characterize
the equilibrium points. In particular, we are interested in the following questions:

1. How do the two equilibrium points compare: is one “better” than the other?
2. Is an equilibrium point fair in some sense?

The next theorem addresses the first question raised above. It shows that one
equilibrium point is better for all users in the sense that all users transmit at
lower rates.

Theorem 2. Assume there exist two equilibria for the non-cooperative game,
whose Nash equilibrium is defined in (2). Let p and p̃ be these two equilibrium
points. If pi < p̃i for some user i, then pj < p̃j for every j ∈ I.
Proof. Define aik

�
= ρi

ρk
. For every user k �= i divide the ith equation in the set

(2) by the kth one. We obtain

aik =
pi(1 − pk)
pk(1 − pi)

<
p̃i(1 − pk)
pk(1− p̃i)

. (3)

Now since
p̃i(1 − p̃k)
p̃k(1− p̃i)

= aik, (4)

it follows that
p̃i(1− p̃k)
p̃k(1− p̃i)

<
p̃i(1− pk)
pk(1− p̃i)

. (5)

We conclude from the last inequality that pk < p̃k. ��
The last result is significant from the network point of view. Assuming that each
transmission is costly (e.g., each transmission consumes a fixed power), we are
interested in a network mechanism which will exclude the inferior equilibrium
point. This would be our main concern in Section 5. Henceforth, we identify the
better equilibrium point as the Energy Efficient Equilibrium (EEE).

We now compare the user effort in a given equilibrium point. Our next result
suggests that at every equilibrium, the transmission probabilities are ordered in
the same order as the throughput demands ρi, i.e., users with a larger demand
transmit more aggressively.

Theorem 3. Let p be an equilibrium point of (2). Then if ρi ≥ ρj it follows
that pi ≥ pj.

Proof. Follows easily from eq. (4). Details are omitted.

The above result indicates that despite user selfishness, some notion of fairness
is maintained at equilibrium: The higher the throughput requirement, the higher
the transmission rate (and consequently, the higher is the power consumption).
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4 Efficiency Loss

We now turn to examine the extent to which selfish behavior affects system
performance. That it, we are interested in comparing the quality of the obtained
equilibrium points to the theoretical case where a central authority can set the
users’ transmit policies. Recently, there has been much work in quantifying the
“efficiency loss” incurred by the selfishness of users in networked systems (see
[8] for a comprehensive review). The two concepts which are most commonly
used in this context are the “price of anarchy”, which is the performance ratio
(of a relevant social performance measure) between the global optimum and the
worst Nash equilibrium, and “price of stability”, which is the performance ratio
between the global optimum and the best Nash equilibrium.

We focus in this section on a wireless system, where Wi represents a (fixed)
energy which user i utilizes per transmission. The average power of user i is
then given by Ji(pi)

�
= piWi. A natural performance criterion for evaluating

the quality of an equilibrium is given by
∑

i Ji(pi), which represents the total
power consumption in the network. We next show that the price of anarchy with
respect to this criterion is unbounded, while the price of stability is always one.

Theorem 4. Consider the non-cooperative game whose Nash equilibrium point
is defined in (2). Define

∑
i Ji(pi) as the social performance criterion. Then (i)

the price of stability is always one, i.e., the better equilibrium point coincides
with the social optimum, and (ii) the price of anarchy is generally unbounded.

Proof. (i) immediate, as a social optimum obeys the equilibrium equations (2).
(ii) we establish that the price of anarchy is unbounded by means of an example.
Consider a network with two identical users with a throughput requirement of
ρi = ε → 0 (i = 1, 2), and an average power function given by J(p) = Wp,
where p is the user’s transmission probability (user indexes are omitted in this
example, as users are identical). By symmetry, we obtain a single equilibrium
equation, namely p(1 − p) = ε. As ε goes to zero, the two equilibria are pa → 1
and pb → 0. Obviously, the latter point is also a social optimum; it is readily
seen that the price of anarchy equals at the limit to 2J(1)

2J(0) =∞.

5 A Distributed Algorithm

5.1 The Algorithm

We have shown so far that when an equilibrium point exists, there are two
equilibria, where one obtains lower transmission rates for all users. Moreover,
the performance gap between the equilibria could be significantly large. This
leads us to find a mechanism which will converge to the better equilibrium. We
next suggest a simple distributed algorithm for that purpose.

Let xi =
∏

j �=i(1− pj) denote the current idle probability of all users but the
ith one. Each user i iteratively updates its transmission probability through the
following rule:
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pi := pi + εi

(
ρi

xi
− pi

)
, (6)

where 0 < εi ≤ 1 is the update gain of user i. The motivation for using the above
rule follows directly from the equilibrium equations (2).

A synchronized version of the above algorithm (where all users iteratively
update their transmission probabilities at the same slots) is considered in [9] pp.
347–349. It was shown there that when εi = 1 for every i ∈ I, the algorithm
asymptotically converges to the better equilibrium point.

5.2 Practical Considerations and Stability

We pause here to address certain practical implementation issues which are re-
lated to the presented algorithm. The quantity xi required for the probability
updates can be obtained by each user through dividing the overall idle probabil-
ity by its own idle probability. In practice, the channel’s idle probability should
be estimated by each user by measuring the percentage of idle slots, where the
more slots sensed, the better is the estimate. If the transmission probabilities
are to be updated on a slow time-scale, users would be able to obtain good
estimates of the idle probability. For the sake of our analysis, we assume that
the estimation is perfect. Indeed, the frequency of the updates is an important
issue. There is obviously a tradeoff between the estimation accuracy of xi and
the wish to enforce the required equilibrium as fast as possible. We leave the
quantification of this tradeoff to future research.

We now consider some stability properties of the algorithm. In particular, we
wish to verify whether the better equilibrium point is locally stable. Indeed, even
when the network operates near a stationary working point, users continuously
adjust their probabilities according to (6) (e.g., due to perturbations in their idle
estimation). We then have the following stability result.

Theorem 5. Assume users update their transmission probabilities according to
(6). When each εi is small enough, the EEE is locally stable.

Proof. (outline) Let εi = λiε, with ε-small. The continuous-time limit of (6) as
ε→ 0 is

ṗi = λi

(
ρi

xi
− pi

)
. (7)

We next apply Lyapunov’s indirect method (linearization) to study the stability
of (7). Consider first the case where λi = λj for every i, j ∈ I. Let Z be the
corresponding Jacobian matrix of (7) for this symmetric case. It can be shown
that the elements of Z are given by

zij =

{
−1 i = j

pi

1−pj
i �= j

. (8)

It can be further shown that the matrix Z is strictly diagonally dominant (see,
e.g., [10]) for the better equilibrium point. As such, all eigenvalues of Z have a
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negative real part ([10], pp. 349). Consider now a general asymmetric case. Let
λ = diag(λ1, . . . , λn). Then the corresponding Jacobian matrix of (7) is given
by λZ. It is known that if all eigenvalues of Z have a negative real part, then
the same property holds for RZ, where R is any positive diagonal matrix (see
[11], pp. 112–121). Consequently, we may conclude that the equilibrium point is
asymptotically stable. The local stability of the discrete-time model follows now
by continuity argument. ��

6 Achievable Throughput

The aim of this section is to provide a lower bound for the maximal throughput
which can be obtained in the network.

The theorem below establishes the conditions for the existence of an equilib-
rium point in the symmetric case.

Theorem 6 (Symmetric users). Let ρi = ρ for every 1 ≤ i ≤ n. Then an
equilibrium exists if and only if

n∑

i=1

ρi = nρ ≤ (1− 1
n

)n−1. (9)

Proof. In every equilibrium of the symmetric case pi = pj = p, for every i, j
(immediate by Theorem 3). Thus, the equilibrium equations (2) diminish into a
single (scalar) equation:

h(p)
�
= p(1− p)n−1 = ρ. (10)

We next investigate the function h(p). The derivative of h(p) is given below.

h′(p) = (1− p)n−2
(
1− p− (n− 1)p

)
= (1− p)n−2(1 − np). (11)

It can be seen that the maximum value of the function h(p) is obtained at
p = 1/n. An equilibrium exists if and only if the maximizer of the function
obtains a value which is greater than ρ. We assign the maximizer p = 1/n of
h(p) in (10) and the result immediately follows. ��
The next corollary provides a sufficient condition for the existence of an equilib-
rium for any number of symmetric users.

Corollary 1. Let ρi = ρ for every 1 ≤ i ≤ n. Then an equilibrium exists if∑n
i=1 ρi ≤ e−1.

Proof. Observe that the left hand side of (9) is the total throughput demand.
It may be easily verified that the right hand side of (9) decreases with n. Since
limn→∞(1 − 1

n )n−1 = e−1, a total throughput demand which is less or equal
than this quantity guarantees the existence of an equilibrium. ��
It can be shown that the simple bound obtained above holds for non-symmetric
users as well, implying that the symmetric case is worst in terms of system
utilization. Our result is summarized below. Due to lack of space the (somewhat
lengthy) proof is omitted.
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Theorem 7 (Asymmetric users). For any set of n users, an equilibrium point
exists if

n∑

i=1

ρi ≤ (1− 1
n

)n−1. (12)

The quantity e−1 is also the well-known maximal throughput of a slotted Aloha
system with Poisson arrivals and an infinite set of nodes [9]. In our context, if the
throughput requirements do not exceed e−1, an equilibrium point is guaranteed
to exist. Thus, in a sense, we may conclude that user heterogeneity does not
deteriorate the capacity (i.e., the maximal throughput) of the collision channel.

7 Conclusions and Model Extensions

We have investigated in this paper the interaction between heterogenous users,
who adjust their transmission rates in order to obtain their individual through-
put demands. We established that the network possesses either two Nash equi-
libria or none. In case that two equilibria exist, in one of the equilibria all users
transmit at lower rates compared to the transmission rates at the other equilib-
rium. Translating this fact to power-related terms (which are relevant in wireless
systems), we further demonstrated that the performance gap between the two
equilibria (in terms of power consumption) could be arbitrarily large. Conse-
quently, network users should be willing to accept a mechanism which ensures
convergence to the better equilibrium. We have suggested such a mechanism,
and studied some stability properties thereof.

In an ongoing work, we consider a more general scenario of a block fading
channel [1], where the channel state of each user varies over time, and affects
the data rate. Users, who measure their channel state, base the transmission
decision at each time slot on the current measurement of their channel state.
Our analysis so far indicates that many of the results of the present paper carry
over to this general setup.

Several additional directions remain for future research. Among which are:
(i) Further analyzing asynchronous versions of the distributed algorithm. (ii) In-
corporating the transmit power as an additional decision variable (as in [5,6]).
In some models of practical interest, the transmission power not only affects the
data rate, but also the reception chances of the packet. In this context, we plan to
include capture models (which sometimes better represent WLAN systems) and
multi-packet reception models [12] (as in CDMA systems) in our future work.
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Appendix – Proof of Theorem 1

We start with the following lemma, which relates the user probabilities in equi-
librium.

Lemma 1. In every equilibrium point the following relation holds for every
i, j ∈ I.

pj =
ajipi

1− pi + ajipi
, (13)

where aji
�
= ρj/ρi.

Proof. Immediate by dividing the equilibrium equation of the ith user by the
equation of the jth one. ��
The idea behind the proof of the theorem is to represent the equilibrium con-
ditions through a single scalar equation. The result then follows by showing
concavity of this equation.

The equilibrium point p (if exists) is by (2) such that

pi = ρi/
∏

j �=i

(1− pj), 1 ≤ i ≤ n. (14)

Fixing the ith user and substituting (13) into (14) for every j �= i we obtain the
following equation in pi only.

pi

∏

j �=i

(
1− ajipi

1− pi + ajipi

)
= pi

∏

j �=i

(
1− pi

1− pi + ajipi

)
= ρi. (15)
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Taking log from both sides we have

log pi +
∑

j �=i

log
(

1− pi

1− pi + ajipi

)
= log ρi. (16)

Let

g(pi)
�
= log pi +

∑

j �=i

log
(

1− pi

1− pi + ajipi

)
. (17)

We next investigate the properties of the function g(pi). Specifically, we con-
centrate on the user with the maximal demand. Without loss of generality, let
user i be the one with the maximal demand, i.e., ρi ≥ ρj for every j �= i. Thus,
aji ≤ 1. The derivative of g(pi) is calculated below.

g′(pi) =
1
pi

+
∑

j �=i

1− pi + ajipi

1− pi
· −(1− pi + ajipi) + (1− aji)(1 − pi)

(1 − pi + ajipi)2

=
1
pi
−

∑

j �=i

aji

(1− pi)(1− pi + ajipi)
. (18)

We focus our analysis on pi ∈ [0, 1]. Observe that g(0) = g(1) = −∞. Addi-
tionally, g′(0) =∞, g′(1) = −∞. Hence, if the derivative g′(pi) is monotonously
decreasing in pi ∈ [0, 1], then there are either two roots (which may coincide) or
none for the equation (16). Indeed, deriving g′(pi) yields

g′′(pi) = − 1
p2

i

+
∑

j �=i

aji

[
(1− pi)(−1 + aji) + (−1 + pi − ajipi)

]
(
(1 − pi)(1 − pi + ajipi)

)2 . (19)

Noting that aji ≤ 1, it may be easily verified that (1 − pi)(−1 + aji) < 0 for
pi ∈ [0, 1); additionally (−1 + pi − ajipi) = −1 + pi(1 − aji) < 0 for pi ∈ [0, 1),
so overall g′′(pi) < 0 for pi ∈ [0, 1]. We conclude that there are either two roots
or none for the equation (16). Hence, there are either two equilibrium points or
none for the game. There is a single equilibrium point in the non-generic case
where the maximum of g(pi) equals log ρi. ��
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Abstract. We consider the problem of selfish or competitive routing
over a network with flow-dependent costs which is shared by a finite
number of users, each wishing to minimize the total cost of its own flow.
The Nash Equilibrium is well known to exist for this problem under
mild convexity assumptions on the cost function of each user. However,
uniqueness requires further conditions, either on the user cost functions
or on the network topology. We briefly survey here existing results that
pertain to the uniqueness issue. We further consider the mixed Nash-
Wardrop problem and propose a common framework that allows a unified
treatment of this problem.

1 Introduction

The selfish routing problem involves a number of non-cooperative users, or play-
ers, each wishing to ship a certain amount of flow over a shared network, where
link costs are flow dependent. A user can choose which route (or routes) to use
in order to minimize the total cost of its own flow. This gives rise to a non-
cooperative game, with the associated Nash equilibrium as the central solution
concept.

Selfish routing was first considered by Wardrop [28] in the context of trans-
portation networks. This paper introduced the notion of shortest-path equilib-
rium, or Wardrop equilibrium, where only minimal-cost pathes are used between
each origin-destination pair. This may be view as the Nash equilibrium of a game
between a continuum of infinitesimal users. Recent overviews of the extensive
literature that concerns the Wardrop equilibrium and its variants may be found
in [3,20,22,25].

The finite-user version of the selfish routing model was introduced in the
literature more recently, motivated in part by the non-centralized view of com-
munication networks. The paper [11] shows convergence of the Nash equilibrium
(for symmetric users) to the Wardrop equilibrium as the number of users in-
creases to infinity. Existence, uniqueness and some basic properties of the Nash
equilibrium are studied in [2,4,21,23]. The notion of a mixed Nash-Wardrop equi-
librium, which combines infinitesimal users with positively-sized ones, is con-
sidered in [7,10]. Efficient network design and management are considered in
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[9,13,14,15,16], while [26] bounds the performance degradation relative to cen-
tralized routing (along with similar results for the Wardrop equilibrium). The
convergence of some dynamic schemes to the Nash equilibrium is considered in
[12], while [17] considers a repeated game version of the routing problem, and
[5] considers the addition of side-constraints on link flows.

Our focus here in on the question of uniqueness of the Nash equilibrium in self-
ish routing. Besides its theoretical interest, uniqueness is of obvious importance
for predicting network behavior in equilibrium. From the computational aspect,
efficient procedures that find all Nash equilibria are virtually non-existent when
the equilibrium is non-unique. Uniqueness is also of particular importance for
network management, where regulating the user behavior in a single equilibrium
(using pricing, for example) is usually much easier than for several equilibria
simultaneously.

Uniqueness is well-known to hold for the basic (single-class) Wardrop equi-
librium, assuming only that the link costs are strictly increasing in the link
flow. In that case the Wardrop equilibrium has been shown in [6] to be equiva-
lent to convex optimization problem, and hence is unique. However, this simple
cost monotonicity requirement no longer suffices for the the finite-user Nash
equilibrium, as shown through simple counter-examples, nor for the multi-class
Wardrop equilibrium problem (where link costs depend on the user class). There-
fore, additional conditions are required to guarantee uniqueness in these cases.
Existing conditions may be roughly divided into two types: conditions on link
cost functions on the one hand, and conditions on the network topology on the
other. In this paper we provide a brief survey of these uniqueness results, focusing
on the finite-user model. We will also show that the multi-class Wardrop equi-
librium may be embedded within the finite-user problem, and outline a general
framework that handles the joint Nash-Wardrop problem in a unified manner.

2 The Game Model

Consider a network which is defined by a directed graph G = G(V, L), where V
is a finite set of vertices (or nodes) and L ⊂ V × V is a set of edges or links.
This network is shared by a finite set I = {1, 2, . . . , n} of users, where each user
i needs to deliver a given positive amount di of flow from its source node Oi

to its destination node Di, and may divide its flow between the set of paths
πi that connect these nodes. Denote by f i

l the flow of user i on link l, and let
fl =

∑
i∈I f i

l denote the total flow on link l. Furthermore, fl = (f i
l )i∈I is the flow

vector over link l, f i = (f i
l )l∈L is user i’s flow profile, and f = (f i)i∈I denotes

the system flow profile.
The flow profile of each user is subject to the standard positivity and conserva-

tion requirements. That is, f i
l ≥ 0, and the sum of flows at each node (including

external incoming or leaving flow) is null. We denote the set of feasible flow
profiles f i for user i by F i, which is clearly a closed, convex polyhedron, and by
F the set of feasible system profiles.
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Let J i(f) denote the cost function for user i. We consider additive costs of
the form

J i(f) =
∑

l∈L

J i
l (fl) . (1)

Thus, the cost for each user is the sum of its link costs, and the cost of any given
link depends only on the flow vector on that link. We further impose here the
following assumptions:

Assumption A1: J i
l (fl) = f i

l T
i
l (fl).

Assumption A2: The function T i
l takes values in [0,∞], and is continuously

differentiable, strictly increasing (where finite), and convex.

T i
l (fl) is the cost per unit flow for user i on link l. Note that the per-unit costs

may differ between users; this may arise, for example, due to user-dependent
pricing. A simple consequence of these assumptions is that the link cost function
J i

l (f l) is strictly convex in f i
l , hence the user cost J i(f) is convex in fl.

We note that more general cost functions of the form J i
l (fl) = J i

l (f i
l , fl) have

been considered in [21] and subsequent literature. However, in this review we
will focus on the above-mentioned case, which is of most practical interest.

A cost function that is often used in the context of communication networks is
the M/M/1 delay functions, namely T i

l (fl) = 1
Cl−fl

for fl < Cl, and T i
l =∞ for

fl ≥ Cl, where Cl is the link capacity. Note that the above assumptions allows
the per-unit costs to assume infinite values, as long as the increase to infinity is
continuous.

A flow profile f̂ is a Nash equilibrium point (NEP) if each user’s flow profile is
a best-response against the combined flows of the others. That is, for each i ∈ I,

J i(̂f ) = min
f i∈F i

J i(̂f1, . . . , f̂ i−1, f i, f̂ i+1, . . . , f̂ I). (2)

A simple consequence of Assumptions A1-A2 above is that the link cost func-
tion J i

l (f l) is strictly convex in f i
l , hence the user cost J i(f) is strictly convex

in fl. If follows that the above model is a convex game, and existence of the
NEP essentially follows from classical results [8,24]. As the best-response mini-
mization problem faced by each user is a convex program, its solution is unique
(whenever finite). However, as is well known, uniqueness of the best response
does not guarantee uniqueness of the equilibrium point.

When cost functions take infinite values, some care is needed in distinguish-
ing finite-cost equilibria from infinite-cost ones, where at least one user does
not have a finite-cost response to the flow of the others. To exclude existence
of infinite-cost equilibria some additional assumptions are required. An fairly
straightforward one is the following:

Assumption A3: For any flow configuration f which involves infinite costs, at
least one user whose cost is infinite can modify its flow configuration to obtain
a finite cost.

Irrespectively of Assumption A3, our discussion will henceforth focuse on
finite-cost equilibria and their uniqueness.
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Nonuniqueness: A first counterexample to the uniqueness of the NEP under
reasonable convexity assumptions was given in [21], using a two-user four-node
network. The user cost functions were not however given in the form of Assump-
tion A1. Counterexamples with cost functions that do comply with A1-A2 are
given in [23] for the networks shown the Figure 2 (we return to these networks
in Section 5). In all these examples non-uniqueness is essential, in the sense that
the user costs are different in the two equilibria.

Elastic demand: The model considered in this paper assumes that flow demands
are fixed. Elastic demand can be incorporated into this model by eliminating
the demand constraint and subtracting a flow utility term U i(di) from the cost
function (1). The utility function is usually assumed to be convex increasing in
the flow, which maintains the convexity of the overall cost. One approach to treat
the elastic-demand case is to reduce it to the fixed demand model by adding a
dedicated link for each user that absorbs its excess flow, with cost that represents
the flow utility. A direct proof of uniqueness for the parallel link network may
found in [1] and [18].

3 Cost Function Conditions

A general tool for establishing uniqueness of the NEP in convex games is the
notion of Diagonal Strict Convexity (DSC) introduced in [24]. This condition
may be applied to the network routing problem to obtain per-link sufficient
conditions. It then remains to determine what classes of link cost functions satisfy
this property.

Let gi(f) = ∂Ji(f)
∂f i denote gradient of user i’s cost with respect to its flow

vector, and for a fixed vector ρ ∈ R
n let g(f , ρ) = (ρigi(f i))n

i=1 (arranged as a
row vector). Then the cost functions {J i} satisfy the DSC property if g(f , ρ) is
strictly increasing in f for some positive vector ρ. That is ρi > 0, and

(g(̂f , ρ)− g(f , ρ)) · (̂f − f) > 0 for all nonequal f , f̂ ∈ F . (3)

As established in [24], the DSC property implies uniqueness of the equilibrium
in the routing game.

The DSC property (3) may be written in scalar notation as
∑

l∈L

∑

i∈I

ρi(gi
l (̂fl)− gi

l(fl))(f̂
i
l − f i

l ) > 0 (4)

It is now clear that a sufficient condition for the DSC property to hold for the
overall game is that a DSC-like property holds for each link separately, but with
a common weight vector ρ. We summarize this as follows.

Theorem 1. Suppose there exist numbers ρi > 0 so that, for each link l,
∑

i∈I

ρi(gi
l (̂fl)− gi

l (fl))(f̂
i
l − f i

l ) > 0 (5)

for any pair of feasible link flows f̂l �= fl. Then the NEP is unique.
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A second-order sufficient condition given in [24] for the DSC property (3) is
that the Jacobian matrix G of g(f , ρ) with respect to f be positive definite
(G + GT > 0) for every feasible f . Applying this condition on to the last result
leads to the following result.

Corollary 1 ([21]). Suppose that matrix Gl(fl, ρ) is positive definite for each
link l, where

Gl(fl, ρ) =

{
ρi

∂2J i
l (fl)

∂f i
l ∂f j

l

}

i,j∈I

.

Then the condition of the last theorem holds, and the NEP is unique.

A couple of simple examples from [21] will be useful for illustrating the nature of
these conditions, and in particular the effect of the system load and cost function
steepness.

Example 1. Assume two users, I = a, b, and consider a link l with capacity Cl

and M/M/1 costs: T i
l = 1/(Cl − fl), where fl = fa

l + f b
l . Then for fl < Cl,

Gl(fl, ρ) =
1

(Cl − fl)3

(
2ρa(Cl − f b

l ) ρl(Cl + fa
l − f b

l )
ρb(Cl + f b

l − fa
l ) 2ρb(Cl − fa

l )

)

Assume that the total flows are in a rectangle which is bounded away from the
link capacity, namely fa

l ≤ ra, f b
l ≤ rb where ra + rb < Cl. It may be easily

verified that the DSC condition on the matrix Gl holds with ρa = rb and ρb = ra.
However, this is not the case under the alternative constraint fa

l + f b
l < Cl.

Indeed, for any fixed vector ρ the matrix Gl(fl, ρ) is not positive definite if fa
l or

f b
l is close enough to Cl. Evidently, the condition in the Corollary is satisfied in

lightly loaded networks (flow requirements da + db < Cl for each link), but not
when the feasible total flow on some link exceeds the capacity.

Example 2. Let T i
l = P (fl), i = a, b, where P is a monic polynomial with degree

m ≥ 1. Then it may be verified that, with ρ = (1, 1), Gl(fl) is positive definite
over the entire positive quadrant if m ≤ 7, but not if m ≥ 8. Thus, DSC is
implied here if the cost function is “not too steep”.

The next result was established for polynomial-like cost functions of the form

T i
l (f) = alf

pl + bl . (6)

Such costs find application in the context of road traffic. Let p∗ = 3n−1
n−1 , where

n is the number of users. Note that p∗ > 3 for any n.

Theorem 2 ([2]). Assume the per-link costs (6), with al > 0 and 0 < pl < p∗

for all l. Then the NEP is unique.

The proof proceeds by demonstrating positive definiteness of the (n by n) matrix
Gl(fl, ρ), with ρi ≡ 1.
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4 Symmetric Users

A general uniqueness result holds for the case of symmetric users, namely when
all users have identical origin-destination pairs, flow demands and link cost func-
tions. In that case the NEP is unique, and indeed turns out to be symmetric
(namely with identical link flows) [21]. The proof is by direct analysis, which
uses the first-order optimality conditions to show that non-symmetric flows lead
to a contradiction.

5 Topological Conditions

Given that uniqueness does not always hold under Assumptions A1-A2 in net-
works of general topology, the question arises as to whether there exist restricted
network topologies for which this general uniqueness property holds. This ques-
tion was answered in the affirmative in [21] for parallel-link networks. In a recent
work, Milchtaich [19] characterized all two-terminal network topologies for which
this property holds for the multi-class Wardrop equilibrium. This result was ex-
tended in [23] to the finite user model, as described below. We start by defining
the following basic property.

Definition 1. A network G has the topological uniqueness property if the NEP
is unique for any routing game over G that satisfies Assuptions A1-A2.

The discussion in this section will be focused on two-terminal networks, where
the source and the destination of all users are the same. The simplest network
topology of interest is that of a parallel network: In this case the network has
only two nodes, with one serving as the origin node for all users and the other
as the destination node. As mentioned, it was shown in [21] that a parallel-link
network has the topological uniqueness property.

We proceed to define nearly parallel networks, following [19]. As shown there,
undirected two-terminal network topologies can be classified into one of two
classes. The class of nearly parallel networks essentially contains the networks
shown in Figure 1, as well as serial connections of those networks. The comple-
mentary class contains all networks in which one of the basic networks shown in
Figure 2 is embedded, in the following sense.

Definition 2. A network G′ is said to be embedded in the wide sense in net-
work G′′ if G′′ can be obtained from G′ by some sequence of the following three
operations:

1. Edge subdivision: An edge is replaced by two edges with a single common
end vertex.

2. Edge addition: The addition of a new edge joining two existing vertices.
3. Terminal vertex subdivision: The addition of a new edge, joining the terminal

vertex O or D with a new vertex v, such that a nonempty subset of the edges
originally incident with the terminal vertex are incident with v instead.



A Survey of Uniqueness Results for Selfish Routing 39

(a) (c)(b)

e1

e2

A

O

D

...

O

D

...

A

e1

e2

O

D

...

(d)

A

e1

e2

O

D

B

e3...

(e)

A B

e1 e2

e3 e4

D

O

...

Fig. 1. Basic networks that define the class of nearly-parallel networks
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Fig. 2. Basic networks that are not nearly-parallel

Definition 3. A two-terminal network G is called nearly parallel if it is one
of the networks in Figure 1, or can be constructed from one of the networks in
Figure 1 by a series of edge subdivisions.
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Theorem 3 ([19]). For every two-terminal network G, one, and only one, of
the following conditions holds: (i) G is nearly parallel, or is a serial connection
of two or more nearly parallel networks. (ii) One (or more) of the networks in
Figure 2 is embedded in the wide sense in G.

The actual (directional) network model is obtained from the non-directional one
by replacing each edge with two directional links, one in each direction. Of the
five networks in Figure 1, only network (e) supports meaningful bidirectional
traffic between some pair of nodes (namely, on the parallel-link network between
nodes A and B) given the indicated origin and destination nodes. Indeed, network
(e) is the most general of the five, as the other four may be considered a special
case of this network for routing purposes. Still, the formal definition of nearly
parallel networks does require all these basic networks.

The following result states that topological uniqueness extends to the class of
nearly parallel networks, and only to that class.

Theorem 4 ([23]). A two-terminal network G has the topological uniqueness
property if, and only if, G is a nearly parallel network or is a series connection
of such networks.

The proof of sufficiency uses specific arguments related to monotonicity prop-
erties of the marginal link costs. The proof of necessity proceeds by providing
a (three-user) counterexample to uniqueness with cost functions that satisfy
A1–A2 for each of the networks shown in Figure 2, and then showing that these
basic examples can be extended to any network that is not nearly parallel by
using the embedding property in Theorem 3(ii).

6 Mixed Nash-Wardrop Routing

Recall that the Wardrop equilibrium may be considered as the limit of the Nash
routing problem, where the user size is infinitesimal. A natural extension to
the model is to consider jointly both large (atomic) users and a continuum of
infinitesimal users that share the same network, to which we refer as the mixed
Nash-Wardrop model [7,10]. As in the multi-class Wardrop model, we assume
that infinitesimal users belong to a (finite) number of user classes, distinguished
by their cost functions.

While the equilibrium conditions for atomic and infinitesimal user classes are
defined from different perspectives, they actually share common properties and
a unified treatment of these two types of users is desirable. In [23] two different
approaches for unified treatment are presented, and used in particular to obtain
proper extensions of the above topological uniqueness properties to the mixed
model. Due to space limitations we do not provide details here. In broad terms,
the two proposed approaches are:

1. Reduction to a finite user Nash model: Here each service class is trans-
formed to a single atomic user with an appropriate cost function. This may
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be considered a multi-class extension of the well known representation of the
single-class Wardrop equilibrium as a (convex) optimization problem.

2. A continuum-game model: Here the framework of non-atomic games [27] is
used to model small users. Thus, each user (large or small) is explicitly modelled
as a rational decision maker with an individual cost function. This is in contrast
to the usual definition of the Wardrop equilibrium, which specifies the behavior
of small-user classes via an aggregate flow condition. As opposed to the previous
approach, the model allows for a continuum of infinitesimal-user classes alongside
the discrete population of large users.

In either case, the cost functions obtained for the infinitesimal users or in-
finitesimal user classes satisfy somewhat weaker conditions than Assumptions
A1–A2 and their natural extensions. Still, these conditions do allow to obtain
unified uniqueness results for this model, which recover the known topological
uniqueness results for both the Nash and Wardrop equilibrium.

7 Conclusion

While new grounds have been gained recently in the analysis of the uniqueness
issue in selfish routing, it appears that much remains to be done. Without fur-
ther conditions on the cost functions, uniqueness results are limited to a fairly
restricted class of network topologies. On the other hand, the sufficient condi-
tions that have been explored so far based on diagonal convexity are link-based
and do not bring the network topology into play at all. One may hope to find
a middle ground that combines cost function properties with other network and
user characteristics. This remains a challenging direction for further research.
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Beyond CHOKe: Stateless Fair Queueing
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Abstract. Making drop decisions to enforce the max-min fair resource
allocation in a network of standard TCP flows without any explicit state
information is a challenging problem. Here we propose a solution to this
problem by developing a suite of stateless queue management schemes
that we refer to as Multi-Level Comparison with index l (MLC(l)). We
show analytically, using a Markov chain model, that for an arbitrary
network topology of standard TCP flows and queues employing MLC(l),
the resource allocation converges to max-min fair as l increases. The
analytical findings are verified experimentally using packet level ns2
simulations.

1 Introduction

Resource allocation in communication networks has been a topic of interest
for some time. In the current Internet most traffic uses TCP as the transport
protocol, and most Internet routers do not differentiate packets from different
flows. In order to adjust the resource allocation amongst competing users, one
can do the following: (1) design the new end-to-end protocol(s) and leave the
network infrastructure (routers) unchanged [28,12,8]; (2) design the new end-
to-end protocol(s) and network support that will allow cooperation between
end-users and network (routers) [11,3,27]; (3) leave the end-to-end protocol(s)
unchanged but design the network based scheme that determines desired resource
allocation[25,5,22].

Most current proposals have as their performance objective a resource alloca-
tion that is max-min fair. In this paper we propose a scheme that belongs to the
third group listed above, and whose performance goal is enforcing a max-min
fair resource allocation. Its main features are the following.

1. No changes to end-to-end transport protocols are required.
2. The decision to drop (mark) a packet is made locally by each router;
3. No multiple queues or per flow counters are used.

Thus, our goal is to design a stateless active queue management scheme that
can enforce max-min fairness in the network of TCP users. While there ex-
ists a large amount of work related to analysis and design of distributed algo-
rithms/architecture that enforce max-min fairness, to the best of our knowledge,
our algorithm is the first that attempts a stateless active queue management
scheme to enforces max-min fairness in the network of TCP users.

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 43–53, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1.1 Paper Contributions

Why is reaching the goal stated above so hard? First, recall that in the max-min
fair regime, a TCP flow f experiences drops at one and only one link lf at its
path (we say that f is bottlenecked at lf ), and therefore must be protected at
other links (that can be congested) by receiving lossless service. Second, if two or
more flows are bottlenecked at the same link they must receive nonuniform loss
rates that are function of their aggressiveness (round-trip times, queuing delays,
delayed acks option, etc). Assuming that the router has access to the individual
flow rates, or the existence of multiple queues that are appropriately scheduled,
a number of solutions to these two problems exist, and are described in previous
works [25,11,20,5,22]. However, in our case (routers with no explicit state infor-
mation) it is highly nontrivial to make the drop (mark) decision without any
explicit information. The main contributions of this paper are:

• A stateless queue management scheme, Multi Level Comparisons with index
l (MLC(l)), which makes the drop decision based on the structure of packets that
are already in the queue (using simple comparisons only).
• A Markov chain analysis of the randomized algorithm MLC(l) that shows

that the resource allocation of MLC(l) converge to the max-min fair, for arbitrary
network topology and arbitrary set of TCP users, as the index l grows.
• Packet level simulations are presented that support the analytical findings.

2 Power-Drop AQM Schemes

It has been noticed in many studies that both drop tail and RED routers have
large bias against large-RTT flows. For example, the authors of [14] have made
the empirical observation that for a drop-tail router and two flows with round
trip times RTT1 and RTT2, the ratio of asymptotic throughput of the first and
the second flow is in the ratio (RTT2/RTT1)a for some a ∈ (1, 2). Similarly, it
has also been noticed in a number of studies, that oblivious (ones that do not
differentiate packets from different flows) AQM schemes (RED [10], BLUE [7],
etc.) which attempt to estimate the loss probability for a given traffic pattern and
to drop packets according to this estimation, share bandwidth among competing
users with round trip times RTT1 and RTT2 in the ratio RTT2/RTT1, [9,2]. In
this section we will investigate RTT unfairness characteristics for more general
AQM schemes we call power-drop AQM schemes.

Definition 1. An AQM is power-drop if it drops a packet from a flow with
current throughput1 U with probability ρ0U

l−1, where ρ0 is variable controlled by
router and l positive integer called index of the given power-drop AQM.

Comment. With l = 1 this corresponds to a router which drops packets with
loss probability ρ0. The case when l = 2 is similar to CHOKe[21] in the limit
when the average queue size does not go the below minimum threshold, and in
1 Throughput is measured in packets per unit of time.
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addition, when there is neither a RED nor an overflow drop. Indeed, comparing a
packet at the entrance of queue with a packet from the queue and making drop-
decision based on this comparison is actually dropping a packet with probability
which is proportional to current throughput of the flow.

In this section we will describe a class of power-drop AQM’s called Multi Level
Comparison (MLC) AQM’s. In particular, we will describe and analyze the
fairness characteristics of this queueing discipline for TCP flows competing for
bandwidth. We will see that the MLC scheme with index l achieves 1/RTT 1/(l+1)-
fairness2 under the assumption of low loss probability (Theorem 1). More gener-
ally, Theorem 2 shows that increasing l leads resource allocation among TCP users
arbitrarily close to max-min fairness in general network topologies.

2.1 Description of MLC

The basic strategy in MLC(l) is to extend the core idea from CHOKe of comparing
of a packet arriving at the queue with packets which are already in queue; these
stored packets are measure of the proportion of bandwidth used by certain flow.
MLC(l) maintains a variable hM which is used to control the probability of drop-
ping an arriving packet: at every packet arrival hM dropping trials are executed.

Dropping trial: Pick randomly l − 1 packets from the queue: if all l
packets belong to same flow, then drop the arriving packet (if l = 1 the
arriving packet is dropped by default).

If the arriving packet is not dropped after the execution of hM dropping trials
then it is enqueued. If hM is not an integer, the number of dropping trials is given
as follows. For hM < 1 we execute 1 dropping trial with probability hM and 0
dropping trial with probability 1− hM . Similarly, hM > 1 we execute �hM�+ 1
dropping trials with probability {hM} = hM − �hM� and �hM� dropping trials
with probability 1− {hM}.
Proposition 1. For a given hM , MLC(l) is power-drop scheme with index l.

Proof. Let Uf be the throughput of a flow f , and U0 the aggregate throughout
on the link. A packet is dropped at one dropping trial with probability

q1 =
(

Uf

U0

)l−1

.

The probability that a packet is dropped after hM trials is 1-Prob[packet is not
dropped at any of hM trials] which is given by

q = 1− (1− q1)hM ≈ q1 · hM = U l−1
f

hM

U l−1
0

.

Taking ρ0 = hM

Ul−1
0

we conclude that MLC(l) satisfies Definition 1.

2 Two flows with round trip times RTT1 and RTT2 which have a single bottleneck
operating with MLC, obtain bandwidth in ratio: (RTT1/RTT2)

−1/(l+1).
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The higher hM the more frequent the losses are. Consequently, if the link is
under-utilized hM should be decreased in order to decrease probability of drop-
ping packets. On the other hand if the aggregate traffic on the link is greater
than the link capacity then hM should be increased to reduce traffic load.

Controlling the variable hM : MLC uses a parameter Δ0 to affect changes in
the variable hM (in our simulations Δ0 is set to 100ms). hM is adjusted once per
Δ0 using a MIMD (Multiplicative Increase - Multiplicative Decrease) scheme.
The performance goal is to keep the utilization at a certain level u0. Namely, if
within the previous Δ0 the link utilization was less than desired u0, hM is set
to hM/γ for some γ > 1, otherwise hM is adjusted as hM := hMγ.

At this point it is important to emphasize a few differences between MLC and
CHOKe. First, note that CHOKe makes a comparison only when the average
queue size becomes greater than minth (RED minimum threshold), and therefore
its performance (in terms of resource allocation between TCP users) depends
mainly on the number of users: a small number of TCP flows will affect the
synchronization of losses, while for large number of users, the number of CHOKe-
drops will be much less than number of RED-drops and therefore the effect of
CHOKe on TCP fairness would be negligible. Second, the design of CHOKe
basically neglects the TCP fairness as performance objective and concentrates
on reducing throughput of unresponsive flow(s) [26], while MLC is designed to
improve TCP fairness and neglects effects of unresponsive flows.

Our experiments indicate that the parameter Δ0 should be in the range of
round trip times of the connections using the link (in order to allow users to
react to changes in hM ). The parameter γ controls the speed of adaptation to
changes in network traffic and should be set such that, for a given Δ0, hM can
be doubled/halved within a few seconds.

2.2 Model and Analysis of Power-Drop AQM

In this section we present a model of power-drop AQM’s servicing multiple TCP
users. We present results that characterize this situation for both a single bot-
tleneck and for general network topologies.

Single bottleneck case. We consider N TCP-flows with heterogenous round
trip times RTTi, i = 1, . . . , N , traversing a single bottleneck link that employs
power-drop AQM with an index l. If we assume that ρ0 does not fluctuate much
(so that we can model it as constant) and that the drop probability for a packet
is small, then our analysis shows that the asymptotic rates achieved by TCP
users are proportional to 1

RTT
2/(l+1)
i

. This is the main result of this section and

is given in Theorem 1.

Model. At the flow level, let Δ be the length of sampling interval over which we
evaluate changes in throughput. If a flow with a round trip time RTT does not
see a drop within interval of length Δ, then its throughput will be increased for
Δ/RTT 2 (see [1]). If a flow registers a drop within this sampling interval then its
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throughput will be halved.3 The probability that the first event will happen is
equal to the probability that each of ΔU packets from the flow are not dropped.
This probability is given by:

η1 = (1− ρ0U
l−1)ΔU ≈ e−Δρ0Ul

.

Clearly, the probability that a flow with current throughput U will see a drop
within a sampling interval of length Δ is equal to

η2 = 1− (1− ρ0U
l−1)ΔU ≈ 1− e−Δρ0Ul

.

The previous approximations are valid under the assumption of a small prob-
ability that a packet will be dropped : ρ0U

l−1 � 1. This assumption seems
reasonable, since if this probability is not small, a flow would suffer too many
losses an therefore would not get chance to enter the (AIMD) congestion avoid-
ance phase.

Let U
(ρ)
k be a stochastic process which describes the evolution of throughput

of a TCP flow with round-trip time RTT traversing over link with a power-drop
AQM scheme with index l. Here ρ = Δρ0. Since Δ is fixed we can assume that
Δ is equal to one unit of time.

We model U
(ρ)
k as a Markov chain on [0,∞) defined by U

(ρ)
0 = 0 and:

U
(ρ)
k+1 = U

(ρ)
k +

1
RTT 2

with probability e−ρ(U
(ρ)
k )l

U
(ρ)
k+1 =

1
2
U

(ρ)
k with probability 1− e−ρ(U

(ρ)
k )l

.

The following theorem characterizes the time averaged throughput of a TCP
flow with round trip time given by RTT , running over power-drop queue man-
agement scheme with index l and its proof can be found in [24].

Theorem 1. The time averaged throughput of the i’th flow: 1
M

∑M
i=1 U

(ρ)
i con-

verges almost surely to:

lim
M→∞

1
M

M∑

i=1

U
(ρ)
i =: U

(ρ)
=

1

RTT
2

l+1 ρ
1

l+1
DMLC(l) +

1

ρ
1

l+1
S(ρ)

where DMLC(l) is a constant that does not depend on ρ neither RTT and S(ρ)

converges to 0 as ρ goes to 0.

Remark. The previous theorem is a generalization of the well known square
root formula. Indeed, for l = 1, power-drop scheme is an oblivious AQM that
drops packets with probability ρ = hM and Theorem 1 says that time averaged
throughput converge to 1

RTT
√

ρDMLC(1) + o( 1√
ρ).

3 Throughout this paper, variations in round trip times are neglected.
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To conclude this section we prove that for a given network with routers em-
ploying a power-drop AQM with index l, and assuming that the steady state
throughput is given by the previous theorem, we can find large enough l such
that bandwidth allocation is arbitrary close to max-min fairness. The following
characterization of max-min fairness can be found in [23].

Lemma 1. A set of rates xr is max-min fair if and only if for every flow r there
exists a link on its path, such that the rates of all flows which traverse through
that link are less or equal than xr.

With this characterization of max-min fair allocation in mind, we shall prove
that increasing the index of the MLC will result in allocation of bandwidth in
such fashion that each flow will have link on its path such that its asymptotic
rate is “almost” the largest among all flows using that link.

Theorem 2. For any given network topology, and given ε > 0, there exists l
such that if all queues employ MLC with index l and loss probabilities are small
then for every flow r there exist a link on its path, such that the rates of all flows
which traverse through that link are less than (1 + ε)xr (here xr is steady state
rate of flow r).

Proof. Let L be the number of links in the network and N the number of flows.
We label flows by i = 1, 2, . . . , N and links by s = 1, 2, . . . , L. By R we denote
the routing matrix: Ris = 1 if flow i uses link s otherwise Ris = 0. On each
link s, a router drops a packet from the flow with current throughput U with
probability ρ(s)U l−1. Let M be the length (in number of links) of the path of the
flow with most links on its route and ν the ratio of the largest and the smallest
round trip time in the network. Choose l such that

ν
2

l+1 M
1

l+1 < 1 + ε.

For each flow r, let s
(r)
1 , . . . , s

(r)
w be links used by it and let s

(r)
max the most

congested link on its route in the following sense:

ρ(s(r)
max) = max{ρ(s(r)

j )| j = 1, . . . , w}. (1)

If the current rate of flow r is U , a packet from that flow will be dropped with
probability λrU

l−1, where λr =
∑w

j=1 ρ(s(r)
j ), and therefore the steady state

throughput for flow r is given by

xr =
1

RTT
2

l+1
r λ

1
l+1
r

C0.

For any other flow t which uses the link s
(r)
max with λt =

∑
j:Rjt=1 ρ(lj) ≥ ρ(s(r)

max)
the steady state throughput is given by:

xt =
1

RTT
2

l+1
t λ

1
l+1
t

C0.
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Recall that we have defined the link s
(r)
max as the most congested link on route

of flow r in the sense of (1). This implies that λr ≤Mρ(s(r)
max). Now

xt

xr
=
(

RTTr

RTTt

) 2
l+1
(

λr

λt

)
≤
(

RTTr

RTTt

) 2
l+1
(

Mρ(s(r)
max)

ρ(s(r)
max)

) 1
l+1

≤

≤ ν
2

l+1 M
1

l+1 < 1 + ε.

Remark. Note that for a single bottleneck topology, the resource allocation
given by C

RTT
2/(l+1)
i

is ((RTT 2
i ), l + 1) proportionally fair[18,23]. Indeed, for any

resource allocation (xi), utility U(x) =
∑N

i=1
RTT 2

i

xl
i

, and link capacity c0 we have
(using Holder’s inequality ):

(U(x))
1

l+1 · c
l

l+1
0 =

(
N∑

i=1

RTT 2
i

xl
i

)
· (

N∑

i=1

xi) =

⎛

⎜⎝
N∑

i=1

⎛

⎝RTT
2/(l+1)
i

x
l

l+1
i

⎞

⎠
l+1
⎞

⎟⎠

1
l+1

·
(

N∑

i=1

(
x

l
l+1
i

) l+1
l

) l
l+1

≤

≤
N∑

i=1

RTT
2/(l+1)
i

x
l

l+1
i

· x
l

l+1
i =

N∑

i=1

RTT
2/(l+1)
i

U(x) is maximized if equality holds in the inequality above, which is equivalent
to xi = C

RTT
2/(l+1)
i

for some constant C. Thus, while spectrum of delay-based

end-to-end protocols[18] assume no cooperation from routers to converge to max-
min fairness, MLC(l) does not require changes in end-to-end protocol to enforce
max-min fairness.

Similar interesting feature is shared between shuffling parameter γ > 0 of
XCP and index l of MLC, but is not discussed here because of space limitations;
see [24,16].

3 Experimental Results

In this section we briefly describe some ns2 simulations that demonstrate the
behavior of proposed AQM schemes.

3.1 Single Bottleneck

The first set of simulations are designed to demonstrate the fairness properties
of the MLC in single bottleneck scenario. Specifically, we present results for a
single link with service rate of 80Mbps that services 100 long-lived TCP users
with round trip times uniformly distributed in range 40 − 440ms. To provide
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Fig. 1. Scaled throughput for 100 flows over congested link employing RED, MLC(2)

baseline results, we include the performance of RED for the same scenario. Share
of total throughput taken by each of 100 flows assuming the bottleneck queue is
managed by MLC(2) is depicted in Figure 1.

It can be seen from Figure 1 that the fairness of RED is approximately pro-
portional to the inverse of RTT. This is in accordance with observations made
in [2,9]. It can also be observed that the fairness of MLC with index 2 is pro-
portional to 1/RTT 2/3 as predicted by Theorem 1. The MLC parameters used
in the simulation are: l = 2, Δ0 = 100ms, γ = 1.01, u0 = 0.98.

3.2 Multiple Bottleneck Topologies

Our second set of simulations demonstrate Theorem 2. The network topology
that we considered is given in Figure 2. Here, we consider a network of 24 nodes:
n1−n5, m1−m5, p1− p5, q1− q5, and c1, c2, c3, c4 and 30 flows traversing the
network as follows: n(i) → p(i); n(i) → q(i), m(i) → p(i); m(i) → q(i); n(i) →
m(i); p(i)→ q(i) where i = 1, 2, 3, 4, 5.The delays on each of the links in ms are
defined as follows:

ni→ c1 : 40 · i + 1; pi→ c3 : 40 · i + 1
mi→ c2 : 40 · i + 1; qi→ c4 : 40 · i + 1

and the delays c1 − c2, c2 − c3, c3 − c4 are 10ms. The capacities of all links
are 10Mbps. With this topology, the max-min fair shares are 0.5Mbps for 20
flows that uses link c2 − c3, and 1Mbps for other 10 flows (n(i) → m(i) and
p(i)→ q(i)).

Each flow uses the standard TCP-SACK algorithm, with a packet size 1000B.
The aggressiveness of each flow is mainly determined by its RTT. The behavior of
the network is evaluated with each link c1−c2, c2−c3 and c3−c4 using: DropTail,
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RED, MLC(2), MLC(3), MLC(5), MLC(9), and MLC(17) with a queue size of
100 packets. MLC(a) parameters are: l = a, Δ0 = 100ms, γ = 1.01, u0 = 0.98.

Normalized Jain’s fairness index for vector that represents resource allocations
U = (U1, . . . , UN ) in the network with max-min fair resource allocation given by
vector Umm = (U1,mm, . . . , UN,mm) is given by

j(U) =

(∑N
i=1

Ui

Ui,mm

)2

N
∑N

i=1

(
Ui

Ui,mm

)2 .

Its values for 7 schemes of interest are following:

j(UDTail)=0.345, j(URED)=0.731, j(UMLC(2))=0.846, j(UMLC(3))=0.884,

j(UMLC(5)) = 0.956, j(UMLC(9)) = 0.989, j(UMLC(17)) = 0.997.
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q5
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Fig. 2. Network topology

We can see significant unfairness in oblivious schemes: DropTail, RED. As
we increase index of MLC scheme, we obtain share of bandwidth very close to
max-min share as expected by Theorem 2.

4 Summary

In this paper we developed an AQM scheme for enforcing max-min fairness in
TCP networks called MLC(l). MLC(l) is a stateless scheme and belongs to class
of queue management schemes that we call power-drop. We showed analyti-
cally that by increasing index l, the resource allocation among TCP users using
network of MLC(l) queues converge to max-min fair. The presented analytical
findings are confirmed by packet level ns2 simulations.
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How Expensive Is Link Utilization?

Rade Stanojević and Robert Shorten

Hamilton Institute, NUIM, Ireland

Abstract. Understanding the relationship between queueing delays and
link utilization for general traffic conditions is an important open
problem in networking research. Difficulties in understanding this re-
lationship stem from the fact that it depends on the complex nature of
arriving traffic and the problems associated with modelling such traffic.
Existing AQM schemes achieve a “low delay” and “high utilization” by
responding early to congestion without considering the exact relation-
ship between delay and utilization. However, in the context of exploiting
the delay/utilization tradeoff, the optimal choice of a queueing scheme’s
control parameter depends on the cost associated with the relative im-
portance of queueing delay and utilization. The optimal choice of con-
trol parameter is the one that maximizes a benefit that can be defined
as the difference between utilization and cost associated with queuing
delay. We present a generic algorithm Optimal Delay-Utilization control
of t (ODU-t) that is designed with a performance goal of maximizing
this benefit. Its novelty lies in fact that it maximizes the benefit in an
online manner, without requiring knowledge of the traffic conditions,
specific delay-utilization models, nor does it require complex parameter
estimation. Moreover, other performance metrics like loss rate or jitter
can be directly incorporated into the optimization framework as well.
Packet level ns2 simulations are given to demonstrate the behavior of the
proposed algorithm.

1 Introduction

Current router buffers are generally sized by the rule-of-thumb given in [25]:
router buffers require approximately space for B = RTT × C packets, where
RTT is the “average” round trip time for connections that use the link and C
is capacity of the link. Following this rule, most router buffers are designed in
such a fashion that they result in up to 100ms to 250ms of queueing[1,4]. This,
together with TCP’s mechanism of congestion avoidance, serves to ensure a high
link utilization.

In the last few years a number of results related to buffer sizing for congested
links have appeared [1,2,4,5] that suggest significantly smaller buffers. Although
the bounds from these papers yield important theoretical insights into the rela-
tion between link utilization and the required buffering they are not immediately
applicable to buffers in the real Internet routers for a number of reasons. Firstly,
these bounds are functions of various parameters such as the number of active
users that are bottlenecked at the link; RTT distribution of TCP users, TCP

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 54–64, 2007.
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parameters (maxcwnd−), etc. These quantities vary, and are also usually very
hard to estimate [6,14,13,24,3]. Secondly, the mathematical assumptions used in
deriving of these bounds are quite restrictive and do not take into account the
various and variable traffic mixes possible, the level of loss synchronization, the
existence of non-TCP traffic, etc. Most importantly, while it is useful to know
that delay and utilization are related in some manner, it is not immediately clear
how to utilize this relationship in a meaningful manner.

In this paper we build an optimization framework for the design of queue
management schemes in which (low) queueing delays are considered as a scarce
resource together with link utilization. The relative importance between queue-
ing delays and utilization is a user1 specified parameter. Therefore the optimal
choice of queueing scheme parameter t is one that maximizes overall benefit B(t)
that takes into account the relative importance of queueing delays and utiliza-
tion. Queueing scheme parameter t can be: (1) available DropTail queue space,
or (2) per packet drop probability, or (3) virtual queue service rate or any other
parameter that can control utilization and queueing delays.

In Section 3 we propose an online algorithm for control of generic parameter
t: Optimal Delay-Utilization control of t (ODU-t). It does not require intricate
measurement techniques neither specific assumptions related to the nature of
traffic mix. In Section 4 we present a brief simulation study of ODU-t for t
denoting available DropTail space.

2 Optimization Framework

Let us consider a synthetic example in which average queueing delay (aQD(t))
and utilization u(t) depend on choice of queueing parameter t given in Table
1. For simplicity, assume for the moment that the parameter t is the available
buffer space on the congested FIFO Drop-Tail queue; for buffer size equal to
t1 the average queue delay is 100ms and the utilization is 100%, for buffer size
equal to t2 the average queue delay is 20ms and the utilization is 98%, and so
on. Which choice of t is optimal (among 4 possible in this example), depends on
the “importance” of low queueing delays. To formalize this, one can identify the
“importance” by the relative price between utilization and queueing delays. Let
P : [0,∞) �→ [0,∞) be a function that specifies relative price between utilization
and delays. In other words, a queueing delay of d seconds has same value as
utilization of P (d). Formally, a price function is any function that satisfies the
following definition.

Definition 1. The function P : [0,∞) �→ [0,∞) is a price function if it is twice
differentiable, increasing and convex. In other words if:
(a) ∀d ∈ [0,∞) ∃P ′′(d)
(b) ∀d ∈ [0,∞) P ′(d) ≥ 0
(c) ∀d ∈ [0,∞) P ′′(d) ≥ 0

1 In this context user is an ISP or link owner.
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Table 1. Synthetic example of aQd(t) and u(t) for 4 different possible choices of
parameter t

t t1 t2 t3 t4
aQd(t)(sec) 0.1 0.02 0.005 0.001

u(t) 1.00 0.98 0.90 0.60

Having defined a price function, the overall benefit (in the case given by the
parameter t) can be written in the form:

B(t) = u(t)− P (aQd(t)). (1)

Comment. Notion, similar to the benefit B(t) is introduced in [2] for t repre-
senting the available buffer size.

The definition of benefit allows us to define a notion of optimal choice, as the
value of t that maximizes the benefit. Formally:

Definition 2. For a given price function P and set T of possible choices of t,
an optimal Delay-Utilization(D-U) choice is any t0 such that

B(t0) = max{B(t) | t ∈ T }, (2)

if the maximum on the right hand side exists.

In the example given in Table 1, if we completely ignore the importance of low
queueing delays, by setting P (d) ≡ 0 for all d, then the optimal D-U choice is
given by t1, as this maximizes the benefit B(t) = u(t)− P (aQd(t)) = u(t) on the
set T = {t1, t2, t3, t4}. For the price function P (d) = 5 ·d, the optimal D-U choice
is t2, and for the price function P (d) = 100 · d, the optimal D-U choice is t4.

Throughout this paper we assume:

Assumption 1. Under static traffic conditions the overall benefit given by (1)
is a concave function of t.

Assumption 1 is very hard to analytically check. In a theoretical framework, this
would require accurate models of various traffic mixes, and as we already noted,
modelling such complex environments is highly nontrivial. Some results related
to the convex relationship between utilization and buffer size in non-elastic traffic
environments are developed in [17,18]. However, our empirical observations sug-
gest that for the traffic mix that is consisted from the static number of TCP and
UDP flows, Assumption 1 holds when t is (1) the available DropTail space or (2)
per-packet drop probability or (3) Virtual queue service rate. Technical report
[22] discuss this in more detail, and contains the packet level ns2 simulations
results that validate Assumption 1 under mentioned circumstances.

3 Optimal Delay-Utilization Control of t

Convex optimization has been widely employed in the networking community
see [15,23]. In our case, we need an efficient algorithm for solving (2). A standard
control strategy for solving (2) is given by
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t(k + 1) = t(k)
(

1 + g(k)
B(t(k)) −B(t(k − 1))

t(k)− t(k − 1)

)
, g(k) ≥ ε > 0, (3)

The problem with employing this strategy in the present case is twofold. First,
as we do not have explicit relationship between t and B(t), we can not instantly
compute the derivative B′(t(k)). Second, the noise to signal2 ratio in measuring
of both queueing delays and utilization can be very large (see [22]) especially
in the neighborhood of the solution of (2). This would potentially imply low
confidence in the estimation of B′(t) in the neighborhood of the solution of (2).

We emphasize again that t is any parameter such that by controlling t, one
can control both utilization and queueing delays. Thus, if the performance goal
is given by keeping the average utilization at a certain level λ, one can design
a strategy for achieving that goal by controlling t. Similarly, if the performance
objective is keeping the average queueing delay (at the times of congestion) at
a prescribed level d0, another control strategy can be designed for solving that
problem. At this point we should note that by controlling t one can (usually)
control not only utilization and queueing delays, but also other (important)
performance metrics such as jitter and loss rate. Embedding them into an op-
timization framework could be done in straightforward manner, but is out of
scope of the present paper.

Following the delay-utilization optimization framework developed in the pre-
vious section, the performance goal of interest will be the maximization of the
benefit B(t). We proceed by presenting an ODU-t algorithm, a strategy with
that performance goal.

The ODU-t algorithm controls the variable t such that the value t is updated
once per sample time period (Δ) in the following manner:

t(k + 1) = t(k) ·m(k), (4)

where m(k) is defined by:

m(k) = α, if
B̂(l(k))− B̂(l(k − 1))

t(k)− t(k − 1)
≥ 0, (5)

m(k) =
1
α

, if
B̂(l(k))− B̂(l(k − 1))

t(k)− t(k − 1)
< 0. (6)

Here, α > 1 is a constant parameter, close to 1. The choice of α determines the
responsiveness of the algorithm. Since t is either multiplied with α or divided by
α, in each step k, t(k) = t(0) ·αl(k), for some integer l(k). By B̂(l(k)) we denote
the estimated value of B(x) at the point x = t(k) = t(0) · αl(k). Algorithms
of this type can be seen as a version of (3) that do not allow arbitrarily small

2 By definition B(t) is function of average utilization u(t) and average queueing delay
aQd(t). Instantaneous utilization (queueing delay) can be seen as random variable
that is sum of u(t) (aQd(t)) and appropriate zero mean random variable, that we
refer to as noise.
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steps. We again emphasize that strategies of the form of (3) are inappropriate
in our problem since any algorithm of type (3) that allows very small changes
in the parameter t would suffer from a high noise to signal ratio around global
maximum of B(t), and would require a long time for accurate estimation of
B in the neighborhood of the global maximum. Moreover, it has been proved
in [21], using information-theoretical techniques, that any algorithm for finding
an optimum using noisy observations of a benefit function has slow expected
convergence. Namely, O(ε−4) queries have to be made before one can ensure
ε-accuracy in the estimation of the optimum x∗. Under dynamic, Internet-like
traffic conditions, frequent (small) changes of the traffic patterns might not allow
such (exact) algorithms to converge, and can potentially cause undesirable large
oscillations.

Algorithms of the form of (4) that do not converge to the certain value, but
rather continuously search for the optimal value have been extensively used
in the networking literature. Examples of such algorithms are AIMD3 cwnd−
control in TCP [11], AIAD algorithm for controlling the drop probability in
BLUE[8] as well as MIMD algorithm for the adaptation of RED parameters in
Self-Configuring RED [7].

The parameters of ODU-t are: P (d) - price function, Δ - length of sampling
period and α - MIMD parameter. While in general P (d) can be an arbitrary
function that satisfies Definition 1, throughout this paper we will mainly use
functions that are linear in d:

Pγ(d) = γd, γ > 0. (7)

If we restrict ourselves to price functions of this form then the parameter
Pγ(d) can be specified by a single scalar γ. A higher value of γ assigns more
importance to low delays and vice versa. The sampling period time Δ should
be chosen to cover several “typical” round trip times, in order to allow traffic
to respond to change of t. Choosing Δ in range [1sec, 5sec] usually satisfies this
condition. The parameter α determines the responsiveness of ODU-t, and should
be selected such that it allows doubling/halving of t within several seconds (up
to one minute).

At this point we discuss the notion of variability in the traffic conditions.
Measurements from [20] show that on typical 150Mbps+ links, basic IP param-
eters such as the number of active connections, the proportion of TCP traffic,
the aggregate IP traffic, etc., do not change dramatically. Although we do not
exclude the possibility that there can be drastic changes in the traffic mixes, our
basic presumption in the design of ODU-t is that such events are rare enough to
be considered as exception rather than rule. Thus, ODU-t is designed to search
for an optimal solution in the “regular” intervals, during which traffic conditions
vary slowly. In the cases of dynamic traffic conditions, one can perform self tun-
ing of the parameters Δ and α depending on the level of changes in the traffic
conditions.

3 Additive Increase Multiplicative Decrease.
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The following theorem shows that, assuming that estimator B̂ preserves order
of B on the grid Tα = {t(0) · αn, n ∈ Z} the controller (4) runs system to the
state that is close to global optima. The proof is given in [22].

Theorem 1. Let t∗ be the point where global maximum of B is attained. Suppose
that estimator B̂ preserves the order on the grid Tα, ie. for all m1, m2 ∈ Z:

B̂(m1) ≥ B̂(m2)⇔ B(t(0)αm1) ≥ B(t(0)αm2 ).

Then there exist m0 such that for all positive integers r:

t(m0 + 2r) = t(m0 + 2r + 2) = t̄

t(m0 + 4r + 1) = t̄α, and t(m0 + 4r − 1) =
t̄

α
,

and the relative error between t̄ and t∗ satisfies:

t̄− t∗

t∗
≤ α− 1. �

4 Case Study: t Is the Available DropTail Space

In this section we evaluate the behavior of ODU-t for t denoting the available
DropTail space.

Simulation4 1. Our first set of simulations illustrate the dynamics of t under
static conditions of 50 TCP flows with RTT’s uniformly distributed in range
[20, 220]msec and with packet sizes of 1000 bytes. We run ODU-t with param-
eters Δ = 2sec, α = 1.05. The price function used is P10(d) = 10 · d. Initially:
t(0) = 100Kbytes. The off-line (see Simulation 2) optimal value are approxi-
mately t∗ ≈ 130Kbytes. Figure 1 depicts the queue occupancy, evolution of t
and utilization for both cases.

Simulation 2. The second set of simulations shows how close the average queueing
delays and average utilization are to the optimal values, in static conditions with
a constant number TCP flows. We ran the set of 50 TCP flows, with RTT’s
uniformly distributed in range [20, 220]ms and packet sizes of 1000 bytes, over
a bottleneck link with capacity 10MBps. By running a sequence of simulations
with buffer of constant size we can empirically find aQd(t) and u(t) and thus
the optimal values t∗ corresponding to different price functions. We refer to
these (empirically obtained) optimal values as offline-optimal. Rows 3,5 and 7 in
Table 2 contains aQd, u and Bγ for the offline-optimal value of parameter that
maximize Bγ in three cases: γ = 2, 10, 20. For same value of γ’s we run ODU
using price function Pγ(d) = γ · d as the parameter. Online averages (5 minutes
per simulation) of aQd, u and Bγ are presented in Table 2 in each of these three
cases.
4 Scripts used in all simulations from this paper can be found at

http://www.hamilton.ie/person/rade/Optimal/
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Fig. 1. Simulation 1. Queue occupancy, available buffer space(t), and utilization for
ODU-t queue servicing 50 TCP flows

Table 2. Numerical results: off-line optima and online ODU-t. The last column repre-
sents Bγ(t) = u(t) − γ · aQd(t).

Scheme, γ aQd(sec) u Bγ

ODU, γ = 2, online 0.01075 0.9890 0.9675
DT, γ = 2, off-line 0.01058 0.9876 0.9664

ODU, γ = 10, online 0.00471 0.9544 0.9074
DT, γ = 10, off-line 0.00521 0.9589 0.9067
ODU, γ = 20, online 0.00283 0.9222 0.8655
DT, γ = 20, off-line 0.00293 0.9269 0.8683

0 1 2 3

x 10
6

0

50

100

150

Aggregate UDP sending rate(bytes/sec)

Fre
que

ncy

0 100 200 300 400
0

50

100

150

200

250

time(sec)

t( in
 Kb

ytes
)

u = 0.956; aQd = 3.87ms; Bγ = 0.918

Fig. 2. Simulation 3. Left: histogram of aggregate UDP sending rate (sampling intervals
100ms). Right: available buffer space as function of time. Queue service 50 TCP flows
and 50 on-off UDP flows.

Simulation 3. This simulation shows stable behavior of ODU in the case of
mixtures of TCP and (variable) UDP traffic. In this simulation, the same set
of 50 TCP flows that were defined previously compete for a bandwidth on
10Mbyte/sec link, with 50 UDP flows that have exponentially distributed on
and off periods. The on-periods have a mean of 1000ms, and the off-periods
have mean of 3000ms. The sending rate in on-periods is 1000Kbit/sec. The ag-
gregate UDP arrival rate has a mean of 1.4867Mbyte/sec which is approximately



How Expensive Is Link Utilization? 61

14.9% of the link’s service rate. A histogram, given in Figure 2(left), shows the
distribution of the aggregate UDP sending rate sampled on 100ms intervals.

The ODU parameters are the same as in previous simulations: Δ = 2sec,
α = 1.05. The price function used in both cases is P10(d) = 10 · d. Initially:
t(0) = 100Kbytes. Figure 2(right) depicts evolution of t together with obtained
values of average utilization, average queueing delay and benefit .

We refer the reader to [22] to explore the behavior of ODU-t some other
scenarios which: empirically show stable behavior in cases of sudden changes of
traffic pattern; compare ODU that controls DropTail queue size with ODU that
controls per-packet drop probability; etc.

Simulation 4. Here we demonstrate how other performance metrics are impacted
by changes in available DropTail buffer space. We concentrate on fairness and
loss rate. We use Jain’s Fairness Index (JFI) [12] as a fairness indicator and is
defined as follows. For set of users u1, . . . , uk let r = (r1, . . . , rk) be vector of
their achieved average rates during the measurement interval. Then

JFI(r) =

(∑N
i=1 ri

)2

N
∑N

i=1 r2
i

. (8)

The simulation setup is same as in Simulation 1 and consists of 50 TCP flows
serviced by the 10MBps bottleneck link with RTT’s uniformly distributed in
[20, 200]ms. The bottleneck link has a DropTail queue with size of S kilobytes.
We varied S in range 10 to 300. A basic observation is that the performance
of TCP-like congestion control algorithms, whose dynamics depend on round-
trip time, is significantly affected by queueing delays. By increasing the queue-
ing delay, the aggressiveness of TCP senders is decreased, implying lower loss
rates. From a fairness perspective, larger queueing delays decrease bias against
long-RTT connections. Indeed, for two TCP connections, with round trip times
RTT1, RTT2, RTT1 < RTT2, bottlenecked at a single link with queueing delay
d0, the ratio of their expected rates5 is RTT1+d0

RTT2+d0
. Increasing d0 leads this ratio

to a value closer to one. Figure 3 presents the dependance between available
space in FIFO Drop-Tail queue and loss rate and JFI. We note that for very
small queue sizes (< 50 kilobytes), loss rates are large and TCP dynamics is
dominated by timeouts. In this regime the square root formula is not valid and
fairness is impacted mainly by timeout mechanism.

5 Summary

In this paper we have addressed the problem of utilizing the tradeoff between
queueing delays and link utilization. By specifying the relative importance of
queueing delays and utilization, an optimal choice of a queue management pa-
rameter is the one that maximizes the overall benefit defined by (1). There could
be two possible approaches for solving this problem. First, suppose that one can,
5 This follows from the square root formula.
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Fig. 3. Simulation F. Loss rates (top) and JFI (bottom) for 50 TCP flows serviced by
Drop-Tail queues of different sizes

by accurate modelling and effective estimation, predict the delay/utilization de-
pendance from the control parameter. Then, by an off-line solving of the under-
lying optimization problem we can set the parameter that controls queue scheme
to the optimal value; see [2] for one strategy of this type. And second, where
one can adapt the control parameter such that on average the overall benefit
is maximized. We argue, that the first approach is not feasible in the current
Internet because of both nonexistence of accurate and tractable enough models
for the delay/utilization dependance, and the highly nontrivial estimation tech-
niques that such an approach would require. We thus follow the second approach
and design an online algorithm Optimal Delay-Utilization control of t which aim
to solve the underlying optimization problem by online adaptation of generic
parameter t.

The optimization problem (2) assumes a linear dependance between utiliza-
tion and benefit, and neglected other important performance metrics such as
jitter, loss probability, and fairness. In fact, one can define the general overall
benefit of the queueing scheme controlled by parameter t as:

BG(t) = V (u(t), aQd(t), j(t), L(t), f(t)), (9)

where j(t) is jitter, L(t) is the loss rate, f(t) is a fairness indicator, V is the utility
function. We again emphasize the importance of fairness in TCP environments
where long-RTT connections could heavily suffer from low queueing delays at the
congested links. The embedding of jitter and loss rate into current framework
can be done in straightforward manner. However, including fairness into the
optimization framework, would be much more challenging as we are not aware
of any, computationally light, estimation technique that would faithfully indicate
level of fairness. One possible approach to estimate level of the fairness could be
by counting runs6 as suggested in [16].

From the theoretical point of view, an important open issue is convexity
(concavity) of the average utilization/Q-delays/ loss-rates as function of con-
trol parameter t (available buffer space, random drop probability, virtual queue
6 Run is event where arriving packet belongs to the same flow as some, previously

arrived packet.
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capacity, etc). While some results exist for the nonelastic traffic [17,18], in the
case of elastic traffic, the arrival process depends on the control parameter, which
makes modelling of the corresponding tradeoff curve more difficult.

Other AQM schemes could be seen in the optimization framework as well. For
example the AVQ algorithm developed in [19] or PI[10] have strict performance
goals in terms of utilization(AVQ) or queueing delay(PI). Such schemes can
be easily incorporated into our framework, taking appropriate utility functions
(see [22]).

The MIMD nature of ODU-t algorithm introduced here is just one possible
approach for solving the optimization problem (2). In Section 3 we discussed the
rationale for choosing MIMD algorithm that continuously searches for optimal
value instead of an algorithm that will search for an exact optimal value under
noisy measurements. It will be interesting to investigate other control strategies
as part of future work.

References

1. G. Appenzeller, I. Keslassy, N. McKeown. “Sizing router buffers”. ACM
SIGCOMM, USA, 2004.

2. K. Avrachenkov, U. Ayesta, A. Piunovskiy. “Optimal choice of the buffer size in
the Internet routers”. Proc. of the IEEE CDC, Spain, 2005.

3. A. Dhamdhere, C. Dovrolis. “Open Issues in Router Buffer Sizing” ACM CCR,
Jan. 2006.

4. A. Dhamdhere, H. Jiang, C. Dovrolis. “Buffer sizing for congested internet links”.
Proc. of the IEEE INFOCOM, Miami, FL, USA, 2005.

5. M. Enachescu, Y. Ganjali, A. Goel, N. McKeown,T. Roughgarden. “Part III:
routers with very small buffers”. ACM Computer Communication Review 35(3):
83-90 (2005).

6. C. Estan, G. Varghese, M. Fisk. “Bitmap algorithms for counting active flows on
high speed links”. Proc. of 3rd ACM SIGCOMM conference on Internet measure-
ment, 2003.

7. W. Feng, D. D. Kandlur, D. Saha, K. G. Shin. “A Self-Configuring RED Gateway”.
Proc. of INFOCOM, New York, NY, USA, 1999.

8. W. Feng, K.G. Shin, D.D. Kandlur, D. Saha. “The BLUE active queue manage-
ment algorithms”. IEEE/ACM Transactions on Networking, vol. 10, no. 4, 513-528,
August 2002.

9. R. J. Gibbens, F. P. Kelly. “Distributed Connection Acceptance Control for a
Connectionless Network”, 16th International Teletraffic Conference, Edimburgh,
June 1999, pp. 397-413.

10. C. Hollot, V. Misra, D. Towsley, W.B. Gong. “Analysis and design of controllers for
AQM routers supporting TCP flows” IEEE Transactions on Automatic Control,
pp. 945-959 June, 2002.

11. V. Jacobson. “Congestion avoidance and control”. Proc. of the ACM SIGCOMM,
1988.

12. R. Jain. “The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling”. John Wiley and
Sons, INC., 1991.



64 R. Stanojević and R. Shorten

13. S. Jaiswal, G. Iannaccone, C. Diot, D. F. Towsley. “Inferring TCP connection
characteristics through passive measurements”. IEEE INFOCOM, March 2004.

14. H Jiang , C. Dovrolis. “Passive estimation of TCP round-trip times”. ACM SIG-
COMM Computer Communication Review, v.32(3), July 2002.

15. F.P. Kelly, A.K. Maulloo, D.K.H. Tan. “Rate control for communication networks:
shadow. prices, proportional fairness and stability”. J. Oper. Res. Soc., Vol. 49 (3),
March 1998.

16. M. Kodialam, T. V. Lakshman, S. Mohanty. “Runs bAsed Traffic Estimator
(RATE): A Simple, Memory Efficient Scheme for Per-Flow Rate Estimation”. Proc.
of the IEEE INFOCOM, 2004.

17. K. Kumaran, M. Mandjes. “The buffer-bandwidth trade-off curve is convex”.
Queueing Systems, 38 (2001), no. 4, 471–483.

18. K. Kumaran, M. Mandjes, A. Stolyar. “Convexity properties of loss and overflow
functions”. Operations Research Letters, 31(2), 2003.

19. S. Kunniyur, R. Srikant. “Analysis and Design of an Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management”. IEEE/ACM Transactions on
Networking, 12(2), 2004.

20. Online: http://pma.nlanr.net/Special/.
21. B. Pearlmutter. “Bounds on query convergence”. Preprint 2005. Online:

http://arxiv.org/abs/cs.LG/0511088.
22. R. Stanojevic, R. Shorten. “How expensive is link utilization”. Technical report,

available online: www.hamilton.ie/person/rade/QP.pdf.
23. R. Srikant, The Mathematics of Internet Congestion Control. Birkh̀‘auser, 2004.
24. B. Veal, K. Li, D. Lowenthal. “New Methods for Passive Estimation of TCP Round-

Trip Times”. Proc. of PAM, Boston, MA, USA, 2005.
25. C. Villamizar, C. Song. “High Performance TCP in ANSNET”. ACM Computer

Communication Review, 24(5), 1994



Two Different Models of FAST TCP and Their

Stable and Efficient Modification

Kyungmo Koo1, Joon-Young Choi2, and Jin S. Lee1

1 Department of Electronic and Electrical Engineering, Pohang University of Science
and Technology, Korea

{pumpkins,jsoo}@postech.ac.kr
2 Department of Electronic Engineering, Pusan National University, Korea

jyc@pusan.ac.kr

Abstract. In this paper, we introduce two different models of FAST
TCP. One is from the original FAST TCP model, and the other is from
the ns-2 implementation of FAST TCP. Interestingly, these two models
show significantly different dynamic performance and stability charac-
teristics. That is, while the latter model is always globally exponentially
stable, the former model is faster than the latter model and possible to
go unstable. Motivated from these two models, we suggest a modified
congestion control algorithm. By tuning the gain of the terms caused by
the difference of the two models, the modified algorithm can be made
to become globally asymptotically stable and more responsive than the
ns-2 implementation model of FAST TCP. The stability condition of the
modified algorithm is decoupled from the network parameters and does
not change the equilibrium state.

Keywords: Internet congestion control, FAST TCP, Global stability.

1 Introduction

While the commonly implemented transmission control protocols (TCP) such
as TCP Reno and its variants rely on packet loss to measure congestion, there
has been recent interest in using queuing delay at the links as a new congestion
measure. Some of the TCP examples implementing this idea in their congestion
control mechanisms are TCP Vegas [1] and more recently FAST TCP [9]. When
the queuing delays are used for congestion measure, the users at the sources
are able to anticipate the onset of congestion in time to adjust their congestion
window size, thereby keeping a reasonable number of packets buffered in the
links and then preventing the loss of packets assuming enough buffering spaces
at the links. The congestion control mechanism developed using queuing delay
as a congestion measure is more responsive to network changes and well suited
to high speed networks. Being sensitive to network congestion, it becomes all
the more important to ensure not only stability but also responsiveness of the
algorithm with this mechanism.

FAST TCP is a new TCP congestion control algorithm for high-speed long-
latency networks and uses the queuing delays as congestion measure [9]. Even

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 65–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



66 K. Koo, J.-Y. Choi, and J.S. Lee

though extensive experiments of FAST TCP have been conducted, and the re-
sults are promising [9], the stability property of FAST TCP has not been suf-
ficiently studied yet. Local stability of FAST TCP without network feedback
delay was proved for the case of a single link in [9]. A sufficient condition for lo-
cal asymptotic stability of FAST TCP was achieved for the general network with
network feedback delay in [8]. The global asymptotic stability of FAST TCP is
analyzed for the single-link network in [2,3]. Recent study [3] reveals that FAST
TCP can be always globally exponentially stable in a single-link multi-source
network with a slightly different source model based on ns-2 implementation
[11] of FAST TCP.

In this paper, we introduce two different available models of FAST TCP.
One is from the original FAST TCP model which is used in almost all of the
literature analyzing FAST TCP, e.g. [2,7,8,9], and the other is from the ns-
2 implementation of FAST TCP which is adopted in [3]. We investigate that
these two models show significantly different dynamic performance and stability
characteristics. While the latter model is always globally exponentially stable,
the former model is possible to go unstable even though the former model is
faster than the latter model. Motivated from these two models, we suggest a
modified version of FAST TCP congestion control algorithm. By tuning the gain
of the terms caused by the difference of two FAST TCP models, the modified
algorithm can be always globally asymptotically stable compared to the former
model and still faster than the latter model. We establish a sufficient condition
for global asymptotic stability of the modified algorithm in a single-link single-
source network by adopting the Lyapunov-Razumikhin theorem [4]. Since the
condition is decoupled from the network parameters, it does not change the
equilibrium state.

This paper is organized as follows. Section 2 presents a continuous-time model
for the single-link single-source network with a FAST TCP source and a link
with FIFO queue. Section 3 introduces two different models of FAST TCP and
compares their dynamic performance and stability characteristics. In section 4,
a modified version of FAST TCP congestion control algorithm is proposed, and
its global asymptotic stability is proved in a single-link single-source network.
Section 5 provides the simulation results to illustrate the performance and the
stability of the modified algorithm. And, section 6 makes conclusions.

2 Network Model

In this section, we develop a network model to describe the behavior of FAST
TCP and its modified versions. Analyzing a general multi-link multi-source net-
work with TCP sources considering global stability causes mathematical diffi-
culty and complexity, and hence we focus on the case of a single-link single-source
network in which a pair of sender and receiver node is connected through a single
bottleneck link. The link has a finite transmission capacity c and is assumed to
have infinite buffering storage. Associated with the link is the queuing delay p(t)
and with the source is the congestion window w(t). We assume at time t that
the source observes as a feedback signal the measured queuing delay



Two Different Models of FAST TCP 67

q(t) � p(t− τb) ,

where τb denotes the backward delay in the feedback path from link to source,
and the link observes incoming TCP packets

y(t) � w(t− τf ) ,

where τf denotes the forward delay from source to link. The round trip time
(RTT) T (t) is defined for the source as T (t) � d + q(t), where d is the constant
round trip propagation time, and the round trip feedback delay is assumed to
be T (t) = τf + τb.

FAST TCP periodically updates its congestion window as follows [9]

w(t + Δ) =
1

2

(
w(t) +

baseRTT

RTT
w(t) + α

)
,

where w(t) is the congestion window, baseRTT is the minimum RTT observed, α
is the tuning parameter, and Δ is the update unit time. Using the Euler’s method
ẇ(t) ≈ w(t+Δ)−w(t)

Δ , and defining γ � 1
2Δ , FAST TCP can be expressed as a

differential equation

ẇ(t) = γ

(
−w(t) +

d

d + q(t)
w(t) + α

)
.

Based on the self-clocking property of TCP [5] and ignoring the fast dynamics
at the link, a static approximation model for the link is given as [2]

w(t− τf )
d + p(t)

{
= c if p(t) > 0
� c if p(t) = 0 .

This static model can be interpreted as the queuing delay at the link is alge-
braically determined by the delayed congestion window of the sources. From
q(t) � p(t− τb) and T = τf + τb, the link model can be expressed at the source
side as [2]

w(t− T )
d + q(t)

= c . (1)

Note that this static link model adequately describes the RTT period of delay
between the congestion window w(t) and measured queuing delay q(t), where
q(t) is the delayed feedback information of w(t).1

3 Two Different Models of FAST TCP

In this section, we introduce two different available models of FAST TCP and
show that their dynamic performance and stability characteristics are
significantly different.
1 The original idea of the static link model was presented in [8] in discrete-time.

However, in continuous-time, the model, as it is, does not capture the delay between
w(t) and q(t).
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As derived in Section 2, the original FAST TCP congestion control algorithm
developed in [9] can be modelled as a differential equation (2). Comparing the
numerical results of FAST TCP network to those of ns-2 simulation, however, we
find that numerical results do not clearly match with those of the ns-2 simula-
tion. Especially, in some scenarios, while the numerical simulation of the original
FAST TCP model shows unstable results, the ns-2 simulation results are still
stable with the same network parameters. Taking a close look at the FAST TCP
implementation of ns-2 simulator [11], we notice that their models are slightly
different as follows:

• Original FAST TCP model :

ẇ(t) = γ

(
−w(t) +

d

d + q(t)
w(t) + α

)
(2)

• ns-2 implementation model :

ẇ(t) = γ

(
−w(t) +

d

d + q(t)
w(t − T ) + α

)
(3)

To compare the stability and the dynamic performance of these two models,
we conduct the simulation for a single bottleneck link utilized by a single source.
The source has the propagation delay d = 100 ms and the tuning parameter
α = 50. And, the link capacity c is changed from 10 pkts/ms to 20 pkts/ms at
10 second. For this model, we show in Fig. 1 the numerical results as well as the
ns-2 simulation result.

As shown in Fig. 1, the original model (2) of FAST TCP is unstable even in a
single-link single-source network when the tuning parameter α is not sufficiently
large. In fact, FAST TCP network is guaranteed to be globally asymptotically
stable when the parameter α is larger than the bandwidth-delay product cd
of the network [2]. However, this condition is hard to meet in a real network
because, while α implies the expected number of backlogs on the link, the buffer
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Fig. 1. Comparison of two different models of FAST TCP (d = 100 ms, α = 50, and c
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size of the routers is usually not larger than bandwidth-delay product cd of the
link. Moreover, the equilibrium queuing delay α

c must be larger than propagation
delay d to meet this condition.

On the other hand, even though the link model (1) was not be intended to
implement FAST TCP module in the ns-2 simulator, the model (3) always shows
the globally exponentially stable response when the link model (1) is adopted.
Since the w(t − T ) term of (3) is automatically clocked to the link capacity c,
the closed-loop system of the single-link single-source network simply becomes

ẇ(t) = γ(−w(t) + cd + α) ,

and its solution is

w(t) = (w(0) − cd− α)e−γt + cd + α .

That is, the single-link single-source network with (3) is always globally exponen-
tially stable. Rigorous global stability analysis of (3) in a single-link multi-source
network can be found in [3].

The original model (2) of FAST TCP can be decomposed into

ẇ(t) = γ

(
−w(t) +

d

d + q(t)
w(t− T ) + α

)
+ γ

d

d + q(t)
(w(t)− w(t − T )) ,

which is the ns-2 implementation model (3) plus an additional term

γ
d

d + q(t)
(w(t) − w(t− T )) . (4)

Using the Euler’s method, we have

γ
d

d + q(t)
(w(t) − w(t − T )) ≈ γdẇ(t− T ) ,

where the additional term can be considered as a differential term of the PD-type
controller. Hence, we can interpret that this additional differential term makes
the original model (2) not only respond faster than (3) but also possible to go
unstable.

However, even though the two different models (2) and (3) show different dy-
namic performance, they have the same equilibrium point which is proportionally
fair [6,9].

4 Modified Congestion Control Algorithm

In this section, we suggest a modified FAST TCP congestion control algorithm
and show that it is globally asymptotically stable by appropriately tuning the
involved parameter. The main objective of the modified algorithm is to reduce
the additional term (4) of (2) as small as possible while guaranteeing the stability
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of the algorithm. Hence, the modified algorithm is slower than the original model
(2), but global asymptotic stability is guaranteed and still faster than (3).

By replacing d
d+q(t) with a tuning parameter κ in (4), the additional term

becomes
γκ (w(t)− w(t − T )) ,

where κ ∈ [0, 1] because q(t) � 0, and the modified congestion control algorithm
becomes as follows.

• Modified FAST TCP algorithm:

ẇ(t) = γ

(
−(1− κ)w(t) +

(
d

d + q(t)
− κ

)
w(t− T ) + α

)
, (5)

where κ ∈ [0, 1].

The tuning parameter κ has a trade-off between the convergence speed and
the stability. As described in Section 5, as κ grows, the convergence speed of the
algorithm increases, but the overshoot also increases. Particularly when κ = 0,
the modified algorithm reduces to (3). And, the modified algorithm has the same
equilibrium properties as the original FAST TCP algorithm. They include the
existence and uniqueness of the equilibrium, and the proportional fairness.

In order to make the network stable with the modified algorithm, we need
to find the appropriate condition on the parameter κ. Adopting the static link
model (1), the closed-loop system of the modified FAST TCP network becomes

ẇ(t) = γ (−(1− κ)w(t)− κw(t − T ) + cd + α) , (6)

and by rewriting (6) in terms of the congestion window error w̃(t) � w(t)−cd−α,
we have

˙̃w(t) = γ (−(1− κ)w̃(t)− κw̃(t− T )) .

Theorem 1 shows that, whenever κ ∈ [0, 0.5), the network with the modified
algorithm is globally asymptotically stable independently with any delay.
Theorem 1. If κ ∈ [0, 0.5), then the modified FAST TCP network described by
(6) is globally asymptotically stable.

Proof. If V (w̃(t)) = w̃2(t)/2, then

V̇ (w̃(t)) = −γ(1− κ)w̃2(t)− γκw̃(t)w̃(t− T )
� −γ(1− κ)w̃2(t) + γκ|w̃(t)||w̃(t− T )|
� −γ(1− 2κ)w̃2(t)

whenever |w̃(t)| � |w̃(t − T )|. Therefore, if κ < 0.5, V̇ (w̃(t)) � 0 and we con-
clude from the Lyapunov-Razumikhin Theorem [4] that the modified FAST TCP
network (6) is globally asymptotically stable as long as κ ∈ [0, 0.5).

In contrast to the stability condition, α > cd, of the original FAST TCP model
(2), the stability condition of the modified algorithm is decoupled from the net-
work parameters such as c, d, and α. Hence, the condition does not change the
equilibrium state and only controls the convergence speed and the stability of
the algorithm.
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5 Simulation

In this section, we present a set of MATLAB and ns-2 simulation results to illus-
trate the performance and the stability of the modified algorithm. The network
used in the first and the second simulation test consists of a single bottleneck
link utilized by a single source. We conduct the simulation test for the network
with capacity c = 10 pkts/ms and round trip latency d = 100 ms.
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Fig. 2. MATLAB simulation results of FAST TCP networks (d = 100 ms, c = 10
pkts/ms, α = 50, and κ = 0.499)

The first simulation test is conducted to show that the modified algorithm
is stable in contrast to the original model (2) and still faster than the ns-2
implementation model (3). The tuning parameter α is set to 50 for all three
kinds of TCP sources to violate the condition α > cd, and κ is set to 0.499
for the modified algorithm to satisfy the stability condition of the Theorem 1.
Fig. 2 illustrates that the response of the system implementing (2) is oscillating
because α does not satisfy α > cd, but the system employing (3) or the proposed
algorithm converge to their equilibrium. Moreover, we notice that the modified
algorithm is faster than (3).

The second simulation test is conducted not only to validate the stability
condition of Theorem 1, but also to show the trade-off of the tuning parameter
κ between the convergence speed and the stability. The tuning parameter α is
set to 50, and κ is increased from 0 to 0.6. Fig. 3 shows that, as κ grows, the
convergence speed of the modified algorithm increases, but the overshoot also
increases. And, in the case of κ = 0.6 where the stability condition κ < 0.5 of
Theorem 1 is not satisfied, the modified algorithm becomes unstable.

The third simulation is conducted to illustrate that the modified algorithm
can be successfully implemented in a packet-level TCP congestion control algo-
rithm. The proposed algorithm is implemented as a module of ns-2 simulator
[10] and simulated in a network of a single bottleneck link utilized by three TCP
sources as depicted in Fig. 4. Three sources have identical round trip latency
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Fig. 3. MATLAB simulation results of the modified algorithm (d = 100 ms, c = 10
pkts/ms, α = 50 and κ = 0, 0.1, 0.3, 0.5, and 0.6)
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Fig. 5. ns-2 simulation results of the modified algorithm (d = 100 ms, α = 50, and
κ = 0.5 for all sources, and c = 30 pkts/ms)

d = 100 ms and the tuning parameter α = 50. And, the bottleneck link capacity
is set to 30 pkts/ms. The source 1 is active from the beginning of the simulation
test, and the source 2 and 3 are activated after 20 seconds. After 40 seconds,
the source 2 becomes inactive. The simulation results in Fig. 5 show that the
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modified algorithm is asymptotically stable and more responsive than the ns-2
implementation version of FAST TCP.

6 Conclusions

In this paper, we introduce two different models of FAST TCP congestion con-
trol algorithm. One is from the original FAST TCP model which is used in
almost all of the literature analyzing FAST TCP, and the other is from the
ns-2 implementation of FAST TCP. Interestingly, these two models have the
same equilibrium properties, but they show significantly different dynamic per-
formance and stability characteristics. That is, while the latter model is always
globally exponentially stable, the former model is faster than the latter model
and is possible to go unstable.

Motivated from these two models, we propose a modified FAST TCP conges-
tion control algorithm. By tuning the gain in the algorithm, it can be made to be
always globally asymptotically stable and still faster than the ns-2 implementa-
tion version. In addition, since the stability condition of the tuning parameter
is decoupled from the network parameters, the condition does not change the
equilibrium state. The algorithm is proved to be globally asymptotically stable
in a single-link single-source network, and the simulation results illustrate that
it shows stability and good convergence performance.

References

1. Brakmo, L.S., Peterson, L.L.: TCP Vegas: end-to-end congestion avoidance on a
global Internet, IEEE Journal on Selected Areas in Communications 13 (1995)
1465–1480

2. Choi, J.-Y., Koo, K., Lee, J.S., Low, S.H.: Global Stability of FAST TCP in Single-
Link Single-Source Network, IEEE Conference on Decision and Control (2005)

3. Choi, J.-Y., Koo, K., Wei, D.X., Lee, J.S., Low, S.H.: Global Exponential Stability
of FAST TCP, IEEE Conference on Decision and Control (2006)

4. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equation,
Springer-Verlag (1993)

5. Jacobson, V.: Congestion Avoidance and Control, ACM SIGCOMM (1988)
6. Kelly, F.: Charging and rate control for elastic traffic, European Transactions on

Telecommunications 8 (1997) 33–37
7. Tang, A., Jacobsson, K., Andrew, L.L.H., Low, S.H.: An Accurate Link Model and

Its Application to Stability Analysis of FAST TCP, IEEE Infocom (2007)
8. Wang, J., Wei, D.X., Low, S.H.: Modelling and Stability of FAST TCP, IEEE

Infocom (2005)
9. Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: motivation, architec-

ture, algorithms, performance, IEEE/ACM Transaction on Networking 14 (2006)
1246–1259

10. The Network Simulator – ns-2
http://www.isi.edu/nsnam/ns

11. FAST TCP Simulator Module for ns-2 version 1.1
http://www.cubinlab.ee.mu.oz.au/ns2fasttcp

http://www.isi.edu/nsnam/ns
http://www.cubinlab.ee.mu.oz.au/ns2fasttcp


Revisiting Adaptive RED:

Beyond AIMD Algorithms
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Abstract. We propose a new MIMD Adaptive RED and revisit two
well-known adaptive algorithms for ARED, (Feng et al., A Self Config-
uring RED Gateway, Infocom, 1999) and (Floyd et al., Adaptive RED).
We use the steady-state relation between the maximum marking (drop-
ping) probability, maxp, and the average queue length, q̄, to argue that
different adaptive schemes, AIMD, MIMD, etc., can be proposed when
maxp varies slowly. We model MIMD ARED and study stability. It is
shown through ns-2 simulations that the performance and robustness
properties of MIMD ARED are in fact similar to those of Floyd’s ARED.

1 Introduction

RED parameters are difficult to tune [1] due to changing and unknown1 network
conditions. This is also true for most active queue management (AQM) algo-
rithms, such as the (fixed-gain) PI-AQM [2]. To overcome this problem, adap-
tive schemes for online parameter tuning have been proposed, see e.g. [3,4,5,6,7]
and their references therein. In particular, we study in this paper two ARED
(Adaptive RED) approaches: Feng et al.’s Self-Configuring RED [8] and Floyd
et al.’s Adaptive RED [9].

Floyd et al. [9] proposed an additive-increase multiplicative-decrease (AIMD)
policy to adapt maxp instead of the multiplicative-increase multiplicative-decre-
ase (MIMD) approach of [8] because they considered that an AIMD algorithm
is, in some sense, more robust. It is believed, see for example [10], that MIMD
algorithms could “oscilate wildly” and deliver poor performance. In our opinion,
this is a misconception; it hardly depends on the particular application and
parameter tuning. We show that an AIMD policy is just one of many possible
alternatives to define an adaptive algorithm to RED. To validate our approach,
we propose a MIMD-based Adaptive RED algorithm, similar to Feng’s [8], which
has a performance comparable to that of Floyd’s ARED [9].
� Current address: CINVESTAV-IPN, Área de Mecatrónica, Departamento de Inge-

nieŕıa Eléctrica, Av. IPN No. 2509, Col. San Pedro Zacatenco, C.P. 07360, México
D.F., México.

1 Although routers are at the convergence of flows, Drop-Tail and actual AQM al-
gorithms at routers do not dispose of enough information to estimate (compute)
precise and timely network conditions.

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 74–83, 2007.
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This paper is organized as follows. First, in section 2, we model TCP flows
and RED router connections. Section 3 is devoted to review Adaptive RED ap-
proaches in terms of their stability properties. We propose and model a MIMD
based adaptive scheme for RED algorithm in section 4. We provide precise tuning
rules for this algorithm. We illustrate the performance of the proposed MIMD
algorithm through ns-2 simulations. We finish with some conclusions and rec-
ommendations for future research.

2 TCP/RED Model

We propose a steady-state analysis of TCP-RED dynamics. Steady state refers
here to make (state) derivatives equal to zero. The intuitive (and obvious) rela-
tion between the maximum marking probability, maxp, and the average queue
length, q̄ is then obtain.

Fluid model. The following simplified equations represent TCP flows from N
averaged (identical) sources, a queue controlled by RED, and a round-trip time
rtt, see for instance [2] (TCP model is based on NewReno version of [11]):

a) System: TCP source and queue

dw

dt
=

a−
(
a + 2b

2−bw
)

wp

rtt
dq

dt
=

Nw

rtt
− C

rtt =
q

C
+ Tp

(1)

b) Controlling mechanism: RED

dq̄

dt
= ωq(q − q̄)

p = maxp
q̄ −minth

Δth

(2)

where Δth = maxth −minth.
Here w represents the congestion window size, q is the queue length, q̄ is the

filtered (averaged) queue signal, p is the packet-marking (dropping) probability,
0 ≤ p ≤ 1; a and b are, respectively, increase and decrease TCP parameters,
N is a load factor (number of TCP sources), C is the link capacity, Tp is the
propagation delay, ωq is the pole of low-pass filter in (2), maxth and minth are,
resp., maximum and minimum thresholds for q̄. Finally, maxp is the (maximum)
value of p at q̄ = maxth, 0 ≤ maxp ≤ 1. For the sake of simplicity, delays are
neglected in equation (1); these can added to further complete our analysis.

We only consider values of p on the linear region given by RED algorithm,
refer to [12], i.e. minth ≤ q̄ ≤ maxth, because adaptive RED mechanisms try to
adapt maxp in order to maintain the system (1)-(2) in this region. See section 3.
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Equations (1)-(2) represent a closed-loop system where all parameters are
fixed. Let us assume that maxp is not a constant but an external control signal
susceptible to be manipulated.

Analyzing the “open-loop” system. Parameter tuning. Since maxp is introduced
in our context as a sort of controlled (manipulated) signal, previous system
may be regarded as an “open-loop” system, so that additional controller design
strategies are to be investigated.

Equilibrium state (w∗, q∗, q̄∗, p∗, max∗
p) of the system (1)-(2) is then obtained

in terms of the filtered queue size q̄∗ as follows:

w∗ =
q̄∗ + TpC

N
q∗ = q̄∗

p∗ =
(2− b)aN2

(q̄∗ + TpC)(2b(q̄∗ + TpC) + (2 − b)aN)
(3)

and

max∗
p =

Δth(2− b)aN2

(q̄∗ + TpC)(q̄∗ −minth)(2b(q̄∗ + TpC) + (2 − b)aN)
(4)

Several interesting conclusions can be deduced from the last two equations.
First, in equilibrium the dropping probability p∗ must be always positive. From
(3), we have p∗ < 1:

p∗ =
(2− b)aN ×N

(q̄∗ + TpC)(2b(q̄∗ + TpC) + (2− b)aN)
<

N

q̄∗ + TpC
< 1

provided that N/C < rtt∗. This condition is also equivalent to w∗ > 1.
Equation (4) shows the steady-state relation between the (desired) average

queue size q̄∗ and the maximum marking probability max∗
p. The case q̄∗ < minth

is not taken into account (it yields max∗
p < 0). The value of max∗

p is undefined
for q̄∗ = minth which means that as far as q̄∗ approaches minth, a varying max∗

p

would grow unbounded. For q̄∗ > minth, the behavior of max∗
p is inversely pro-

portional to q̄∗ (monotonically decreasing): an increase of q̄∗ results on a decrease
in max∗

p which is significant when q̄∗ is near minth. Notice limq̄∗→∞ max∗
p = 0.

This behavior agrees with discussions and experimental results of [8].
Figure 1a shows a plot of max∗

p in terms of q̄∗ for the parameter values shown
in the appendix; in particular, N = 60 TCP sources. As q̄∗ is increased, there
is a significant decrease of max∗

p near minth = 20; max∗
p remains between 0 and

1 on the interval minth ≤ q̄ ≤ maxth = 80. When changing the value of N to
N = 800 sources, i.e. N/C = rtt∗ packets/s, max∗

p values changes dramatically.
See Figure 1b. There is a narrow interval, 0.77 < max∗

p < 1, by means of which
q̄∗ remains less than maxth (67.5 < q̄∗ < maxth). This agrees with the previous
results related to p∗: a larger N yields larger values of p∗ and max∗

p, see (4).
As we will see later, Floyd et al. [9] proposes to constrain the value of maxp to
0.01 < maxp < 0.5; these constraints make not possible to get an average queue
size q̄∗ = 50 packets, below maxth (at max∗

p = 0.5, q̄∗ = 87.5 > maxth).



Revisiting Adaptive RED: Beyond AIMD Algorithms 77

a) b)

Fig. 1. max∗
p vs q̄∗: a) N = 60 sources, b) N = 800 sources

Fig. 2. maxp parameter tuning

The shape of the curve relating max∗
p and q̄∗ may lead to a simple mechanism

to adapt maxp depending only on the present value of q̄. See Figure 2. Let qref

be a desired queue size (the queue reference)2. Consider the case q̄ = q1 > qref.
We propose to increase maxp in order to obtain a decrease on q̄. For the case
q̄ < qref, maxp is decreased to obtain a higher value of q̄. This results in the
generic adaptation algorithm given in Listing 1.1. This algorithm is reminiscent
of sliding mode control strategies, see e.g. [13]. In the following sections we
discuss other ARED cases and specify precisely what ‘increase/decrease maxp’
means.

2 Maintaining q̄ = qref is related to link utilization: 100% occupation of the link is
obtained when the queue size q remains all the time in the interval 0 < q < qmax,
which is indeed the case when the dynamics of q̄, not too slow, attains qref.
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Listing 1.1. A generic adaptation algorithm

i f q ave > q r e f
i n c r e a s e maxp

else i f q ave < q r e f
dec rease maxp

else
(∗ do nothing ∗)

end

Listing 1.2. Simplified Self-Configuring RED

(∗ gener i c ARED ∗)
i f q ave > maxth (∗ i f q ave > q r e f ∗)

maxp = maxp ∗ beta (∗ i ncrease maxp ∗)
else i f q ave < minth (∗ e l s e i f q ave < q r e f ∗)

maxp = maxp / alpha (∗ decrease maxp ∗)
else

(∗ do nothing ∗)
end

3 Two Adaptive RED Algorithms

We give a brief overview of two well known ARED algorithms, and compare
them to our generic ARED.

3.1 Feng’s ARED

The aim of Self-Configuring RED [8] is to maintain minth < q̄ < maxth, see
Listing 1.2. This MIMD algorithm has been simplified3 for comparison purposes.
It has two parameters: α > 1 and β > 1 (Feng et al. [8] propose α = 3 and β = 2
without further explanation).

Although there is no explicit target qref, Feng’s algorithm behaves similarly to
the previous proposed algorithm: the higher the value of q̄, the smaller is maxp

(see Figure 2). In particular, assuming minth < qref < maxth, both ‘if conditions’
of Feng’s ARED, i.e. q̄ > maxth(> qref) and q̄ < minth(< qref), are related to
those employed in the generic algorithm.

As shown, instead of considering tight bounds on the desired value of q̄, Feng
et al. [8] use a pretty large interval, which results in: first, variation of maxp

depends on large values of α and β, and, second, a ‘status’ variable must be

3 A variable called ‘status’, not shown in Listing 1.2, has been also considered in [8]:
the value of maxp is increased (decreased) only when q̄ varies around maxth (resp.
minth), if q̄ > maxth (resp. q̄ < maxth) in two consecutive updates nothing has to
be done.
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Listing 1.3. Simplified Floyd’s algorithm

(∗ gener i c ARED ∗)
i f q ave > t a r g e t (∗ i f q ave > q r e f ∗)

maxp = maxp + alpha floyd (∗ i ncrease maxp ∗)
else i f q ave < t a r g e t (∗ e l s e i f q ave < q r e f ∗)

maxp = maxp ∗ beta floyd (∗ decrease maxp ∗)
else

(∗ do nothing ∗)
end

introduced into this algorithm to prevent excessive variations on the value of
maxp (see footnote 3).

3.2 Floyd’s ARED

Floyd et al. [9] have modified the original proposal [8]. First, a narrow target
interval is introduced [minth + 0.4(maxth−minth), minth + 0.6(maxth−minth)];
this is equivalent in the generic algorithm to selecting a target value qref. Instead
of using a MIMD algorithm, an AIMD algorithm is proposed,4 where αfloyd is
the additive increase parameter (αfloyd = 0.01) and βfloyd is the decrease factor,
βfloyd = 0.9, see Listing 1.3. In this case, compared to Feng’s algorithm, we
have α = 1/βfloyd > 1 (observe the little change in notation), which is greater
than 1 as before. Moreover, maxp is constrained to remain within the interval
0.01 < maxp < 0.5. As we already mentioned, this could be too restrictive.

Whereas Feng’s algorithm updates maxp on each packet arrival, Floyd’s ARED
proposes to update the value of maxp every Δt seconds (sampling period Δt =
0.5s). That is, maxp is updated at a slower rate than RED average queue size q̄.
This is also the case of parameters αfloyd and βfloyd which are so selected as to
allow a slowly adaptation of maxp, compared to RED dynamics itself.

The work [9] also describes a set of tuning rules for parameters αfloyd, βfloyd

(related to maxp dynamics) and ωq (average queue dynamics). We will see in
the next section that maxp and low-pass filter dynamics determine stability and
oscillations of queue dynamics, at least on an average sense.

Remark that the analysis and conclusions of [9] are based on intuition and
current network practices, supported via ns-2 simulations; in fact, a large number
of simulations illustrating the behavior of RED and the performance of ARED
under a variety of scenarios is presented. As in [8], there is no explicit mention
to mathematical equations (discrete or continuous) describing the behavior of
such a kind of dynamical system. In the following section, we model a simple
MIMD Adaptive RED and study the dynamical properties of the controlled
system (1)–(2).
4 Remark that Floyd’s ARED also behaves as a MIMD algorithm un-

der particular circumstances: increments of maxp would be given by
maxp = (1+1/4)∗maxp = 1.25∗maxp for maxp < 0.04, see [9].
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Listing 1.4. MIMD ARED

i f q ave > q r e f
maxp = maxp ∗ kappa (∗ i ncrease maxp ∗)

else i f q ave < q r e f
maxp = maxp / kappa (∗ decrease maxp ∗)

else
(∗ do nothing ∗)

end

4 MIMD ARED: Model, Stability, ns-2 Implementation

Listing 1.4 shows a proposed MIMD Adaptive RED based on previous discus-
sions. This algorithm can be applied on each packet arrival or every Δt seconds.
To analyze this algorithm, we will employ a similar approach to that of [11] for
TCP modelling: to translate this discrete algorithm into a differential equation
by assuming a continuous dynamics (i.e. a very short sampling period).

Parameter κ = kappa can be expressed as κ = 1 + δ and 1/κ ≈ 1 − δ, for
0 < δ � 1. If q̄ > qref we have maxp[n + 1] = maxp[n] ∗ (1 + δ). Then, the rate of
change of maxp is given by

d

dt
maxp ≈ maxp[n + 1]− maxp[n]

Δt
=

δ

Δt
maxp[n]

i.e.
d

dt
maxp = γ maxp

where γ = δ/Δt. Consequently, maxp dynamics can be written as follows:

d

dt
maxp = γ sign(q̄ − qref) maxp =

{
γ maxp if q̄ > qref

−γ maxp if q̄ < qref

(5)

This is a discontinuous differential equation which can be analyzed by the meth-
ods given in [14]. To simplify our analysis, we replace the discontinuous function
sign(x) by a continuous one, given by 2

π arctan(λx), λ� 1.
Therefore, the (closed-loop) nonlinear fluid model (1)–(2)–(5) results

dw

dt
=

a−
(

a +
2bw

2− b

)
w

maxp(q̄ −minth)
Δth

q
C + Tp

dq

dt
=

Nw
q
C + Tp

− C

dq̄

dt
= ωq(q − q̄)

dmaxp

dt
= γ

2
π

arctan(λ(q̄ − qref))maxp

(6)
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Fig. 3. Queue size q̄ response (simulation of fluid model): a) γ = 0.001, b) γ = 0.02.
Queue size is restricted to remain positive, q ≥ 0.

Fig. 4. Behavior of MIMD ARED (ns-2 ): q, q̄, p, and maxp responses: (left) an increase
and (right) a decrease in congestion

This model has several interesting properties from a dynamical systems point of
view. Consider the parameter values in the appendix with qref = 50 packets. Lin-
earization of (6) around (w∗, q∗, q̄∗, p∗, max∗

p) = (13.3, 50, 50, 0.00758, 0.01516)
results in the following characteristic polynomial:

s4 + 5.375073738s3 + .9414912881s + 3.236353367s2 + 167.8587290γ (7)

This polynomial, which depends on parameter γ, permits to evaluate the local
stability of (6). It is Hurwitz on the interval 0 < γ < 0.003194, this means that
fluid model is (local) asymptotically stable. For γ > 0.003194, the linearization
becomes unstable. At γ = 0.003194, (7) exhibits two purely imaginary roots. This
is indication of the presence of Hopf bifurcation. As a result, an asymptotically
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periodic orbit appears. Figure 3 shows a numerical simulation for two values of γ.
An even higher value of γ may result in an unstable nonlinear system. A small γ
leads to a slow response. Hence, we have another explanation to the parameter
choices5 proposed in [9], overcoming the tuning problems of [8].

MIMD ARED (Listing 1.4) has been implemented on ns-2. We illustrate
the behavior of MIMD ARED by using ns-2 tests for Adaptive RED (cf. Fig-
ures 7 and 9 of [9]). A low value6 of δ was chosen, δ = 0.0008. Then, we set
kappa_ = 1.0008 and q_weight_ = 0.0001. Results are shown in Figure 4. As
expected, our results are quite similar to those of [9].

5 Conclusions

We obtain a MIMD-based ARED which has similar performance properties as
those of Floyd’s AIMD ARED. We propose continuous and discontinuous mod-
els which can be used to analyze and understand the parameter tuning and
behavior of ARED. Through this model we obtain precise stability results. A
similar approach can be used to model Floyd’s ARED and to propose new adap-
tive algorithms. In forthcoming publications, we further investigate the stability
properties and limit cycles of the closed-loop system (6) given a discontinuous
maxp dynamics; we also evaluate the impact on ns-2 of a nonlinear adaptation
of maxp, given by maxp = maxp + κ× 2/π arctan(λ(q̄ − qref))maxp, where κ is
a gain factor. In the setting presented, it will be rather easy to propose classical,
nonlinear or sliding mode control strategies to define maxp dynamics according
to appropriate stability/performance criteria.
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A Parameter Values

Here are some parameter values used along the paper: C = 3750 packets/s (=
15Mb/(8 bit/byte)/(500 bytes/packet) ), N = 60 sources, a = 1.0, b = 0.5,
minth = 20, maxth = 80, Δth = 60. Here we are considering similar values to
those employed in [9]. Additionally, Tp = 0.2 s, ωq = 0.02. For maxp continuous
dynamics, λ = 10.
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Abstract. In the networking research literature, the problem of network
utility optimization is often converted to the dual problem which, due
to nondifferentiability, is solved with a particular subgradient technique.
This technique is not an ascent scheme, hence each iteration does not
necessarily improve the value of the dual function. This paper examines
the performance of this computational technique in realistic mesh net-
work settings. The traditional subgradient technique is compared to a
subgradient technique that is an ascent algorithm. It is found that the
traditional subgradient techniques suffer from poor performance. Specif-
ically, for large networks, the convergence is slow. While increasing the
step size improves convergence speed, due to stability problems, the step
size cannot be set arbitrarily high, and suitable step sizes result in slow
convergence. The traditional subgradient technique also suffers from diffi-
culties when used online. The ascent scheme performs well in all respects,
however, it is not a distributed technique.

Keywords: Network capacity optimization, subgradient techniques.

1 Introduction

There has been extensive effort focused on finding time division multiplexing
schedules that maximize the capacity of wireless networks [1]- [9]. A common
approach is to maximize the sum of flow utilities subject to constraints related
to interference. Specifically, we consider

min−
∑

φ∈Φ

Uφ(fφ) (1)

subject to:
∑

{φ|l∈P (φ)}
fφ ≤

∑

v∈V

αvR(v, l) for all l and
∑

v∈V

αv = 1, αv ≥ 0.

where fφ is the data rate of flow φ, Uφ (fφ) is the utility of flow φ when the flow
rate is fφ, P (φ) is the set of links that flow φ traverses (i.e., P (φ) is the path
of flow φ), R (v, l) is the data rate over link l when assignment v is used, and
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αv is the duration that assignment v is used. We define an assignment to be a
specification of which links transmit and the transmit powers. Thus, a schedule
is a weighted combination of assignments where the weights are αv. We let V
denote the set of considered assignments. If power control is not used, then there
are 2L distinct assignments, where L is the number of links in the network, and
if power control is used, the space of assignments is [0, 1]L. In [1], a technique
is presented that generates a small set V that results in nearly optimal utility.
Hence, currently, utility optimization is tractable for networks with hundreds of
links. Most efforts to solve (1) use dual or primal-dual techniques. Specifically,
after some manipulation, the dual function is written as

q (μ) =
∑

φ∈Φ

inf
fφ≥0

⎛

⎝−Uφ(fφ) + fφ

∑

l∈P(φ)

μl

⎞

⎠−max
v∈V

L∑

l=1

R(v, l)μl, (2)

where μl is the Lagrange multiplier associated with link l. The dual problem is

max
μ≥0

q (μ) . (3)

Due to the term maxv∈V

∑L
l=1 R(v, l)μl, the dual function, q, is not differentiable

for all μ. Hence, computational methods based on the gradient are not available.
To circumvent this difficulty, supergradient1 techniques can be employed. In
the networking literature [2]-[9], the most popular supergradient technique is to
iterate

μl (k + 1) =

⎛

⎝μl (k) + γk

⎛

⎝
∑

{φ|l∈P(φ)}
f∗

φ (μ (k))−R (v (k) , l)

⎞

⎠

⎞

⎠
+

(4)

where
v (k) ∈ arg max

v∈V

∑
R (v, l) μl (k) , (5)

γk is a step size, and f∗
φ (μ (k)) is the optimal flow given μ (k), i.e., f∗

φ is the
solution to the infimum in (2). Since this scheme is widely used, it will be referred
to as the traditional supergradient scheme.

This paper examines the practical performance of (4) through extensive com-
putational experiments. The conclusions are that the traditional supergradient
scheme suffers from poor performance. Specifically, for large networks, the con-
vergence is slow. While increasing the step size improves convergence speed,
due to stability problems, the step size cannot be set arbitrarily high, and suit-
able step sizes result in slow convergence. On the other hand, this method does
not find the exact solution, but merely oscillates around the optimal solution.
However, the oscillations are small, hence in terms of error, (4) works well. Of-
ten the traditional supergradient techniques are used for online and distributed
1 Subgradient is a more common term. However, subgradient and supergradient tech-

niques are the same, the only difference is that the former refers to minimization
while the later refers to maximization, which is the focus here.
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computation. However, this approach suffers from several problems. Finally, an
alternative ascent algorithm is also investigated. While this approach does not
appear to lend itself to distribution, it does perform well in all other aspects.

The remainder of the paper proceeds as follows. In the next section, a few
theoretical aspects of supergradient based optimization are presented. In Section
3, some details of the computational experiments are provided. The rest of the
paper is focused on the performance of the traditional supergradient scheme,
specifically, Section 4 examines the convergence rate, Section 5 examines the
error, Section 6 examines stability, and Section 7 examines the performance
when the traditional supergradient scheme is used as an online and distributed
computational method. Finally, Section 8 provides some concluding remarks.

2 Theoretical Results on Supergradient Optimization

The performance of (4) has been extensively investigated (e.g., see [10]). In [8],
the following is proved.

Theorem 1. Let γk be a constant γ and let G = maxμ ‖∂q (μ)‖, where ‖∂q (μ)‖
is the norm of the largest element in the superdifferential ∂q (μ) and let u (k) be
given by (4). Then

lim
K→∞

sup
1
K

K∑

k=1

|q (μ (k))− q (μ∗)| < γG2/2.

Thus, one can expect that if a fixed step size is used, then μ (k) will enter a ball
around μ∗ and remain in this ball, where μ∗ is the solution to (3). Hence, using
the terminology of [8], we can consider that the μ (k) has stochastically converged
when it enters this ball. The ball can be made smaller by using a smaller step size.
In fact, by slowly decreasing the step size, this scheme will converge. However, in
order to guarantee convergence, the step size must converge slowly. Specifically,
in general, we must have limk→∞ γkgk = 0 and

∑∞
k=1 1/ (γkgk)2 = ∞, where

gk =
(∑

l

(∑
{φ|l∈P(φ)} f∗

φ (μ (kΔt))−R (v (k) , l)
)2
)1/2

[10].

When q (μ) is not differentiable, the superdifferential, ∂q (u) , is a set of vec-
tors. The algorithm (4) arbitrarily selects one element from the superdifferential
and uses it as if it was a direction of ascent. As just mentioned, if the step size
is selected correctly, then this scheme will converge. However, it is possible to
more carefully select the direction so that it is a direction of ascent2.

Theorem 2 (Thm 1.11 in [10]). Let ∂q (μ) be the superdifferential of q at μ.
Suppose 0 /∈ ∂q(μ) and let η be the element of ∂q(μ) that is nearest to the origin, i.e.,

η = arg min ‖g‖2 (6)
subject to: g ∈ ∂q (μ) .

Then η is a direction of steepest descent at μ.

2 Note due to convexity, there must be a direction of ascent, unless μ (k) = μ∗.
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Fig. 1. Example of the convergence of (4) for a 60 link network

Therefore, steepest ascent is an alternative computational scheme to the tradi-
tional supergradient scheme (4). However, as is well known, steepest ascent can
lead to oscillations that result in slow convergence. The steepest ascent algorithm
can be further improved by using space dilation (see page 69 in [10]). We refer to
this approach as the ascent algorithm. More details on the ascent algorithm can
be found in [1]. Section 4 compares the convergence rate of this ascent algorithm
to the traditional supergradient algorithm (4). In the other sections, this ascent
algorithm is used to find μ∗, the optimal solution to (3) as well as optimal flow
and link rates.

3 Experiment Set Up

The performance of (4) and the ascent algorithm were examined in realistic mesh
network scenarios that were based on downtown Chicago. Specifically, random
mesh networks were generated by placing one infrastructure node randomly on
each block in a region of downtown Chicago. A centrally located infrastructure
node was designated as the base station. All other nodes were set to be wireless
relays. These wireless relays were also set as destinations. Hence, for each relay,
there was one flow from the base station to the relay. Shortest path routing
was used, where the channel loss along each hop was required to be no more
than 55 dB. The propagation was determined from the UDelModels ray-tracing
tool [11]. If some relays were disconnected from the network, then the relay
was excluded from the topology. Finally, by adjusting the size of the region of
Chicago where the mesh network was constructed, the number of links could
be approximately controlled. Topologies were grouped together based on the
number of links. Twenty topologies were generated for each number of links,
where the number of links ranged from 15 to 75 links in steps of five links.

As mentioned in the Introduction, when there are L links, there are 2L possible
assignments. Hence, for large topologies it is intractable to consider all possible
assignments. Instead, the scheme described in [1] was used to construct a good
set of assignments. In [1], it is shown that this technique results in network utility
that is within 0.05% of optimal. Thus, the set V in the Introduction was set to
be this set of good assignments.

Finally, the utility function used was U (f) = log (f) and data rates were
given by Shannon’s Theorem, i.e., log2 (1 + SNIR) bps/Hz.
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Fig. 2. Left: Number of Iterations until convergence. Right: Computation time on an
2.8GHz 64 bit PC until convergence.

4 Convergence Rate

There are few theoretical results on the convergence rate of (4). However, it
is intuitive that a smaller step size results in a slower convergence. Figure 1
shows examples of ‖μ (k)− μ∗‖ for (4) with several step sizes and for the ascent
algorithm. Note that the ascent algorithm will eventually converge, hence the
curve representing the ascent algorithm is only shown for the iterations before
convergence.

We will say that the traditional supergradient scheme has converged when

‖μ (k)− μ∗‖ ≤ lim
k→∞

E (‖μ (k)− μ∗‖) .

Once this condition has been met, we can assume that μ (k) remains in a ball
around μ∗ and the flow and link rates will be approximately correct.

Figure 2 shows the number of iterations until convergence and the compu-
tation time until convergence. Here we assume the computation is performed
centrally. Thus, the computation time for one iteration is the time to update μl

for each link.
The left-hand frame of Figure 2 shows that the convergence time does not grow

exponentially with the number of links. However, the right-hand frame shows
a superlinear growth in the convergence time with the number of links. On the
other hand, the ascent algorithm shows a slower growth than the traditional
supergradient method. To see this, note that for γ = 2, the traditional super-
gradient method converges in less time than ascent algorithm when the number
of links is small, but requires more time when the numbers of links is large.
Similarly, while γ = 6 takes less time than the ascent algorithm when there are
75 or fewer links, it takes more time for large networks. For example, we found
for a set of networks with 280 links, the traditional supergradient method with
γ = 6 takes approximately 1834 seconds, whereas the ascent algorithm takes
approximately 816 seconds.

5 Error

The relationship between the number of iterations to reach convergence and the
step size indicates that if γ is selected very large, then convergence will be very
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Fig. 3. Left: The relative error of μ. The mean is over all topologies with L links. Right:
The ratio of average flow rates to optimal flow rate.

fast. On the other hand, Theorem 1 indicates that the error ‖μ (k)− μ∗‖ grows
with γ.

To investigate this, we consider the average relative error after convergence
(i.e., the average value of ‖μ (k)− μ∗‖ / ‖μ∗‖ for very large k). The left-hand
frame of Figure 3 shows that the relative error is quite small and decreases with
the number of links.

The right-hand frame of Figure 3 provides another view of the error. To under-
stand this plot, recall that given μ (k), the flow rates, fφ (k), can be determined.
If μ (k) differs from μ∗, then fφ (k) will differ from f∗

φ . To examine the size of
this difference, we compare f∗

φ and f̄φ, the average value of fφ (k) for k very
large, i.e., after convergence. Specifically, we examine

median
over all topologies

max
φ

max

(
f∗

φ

f̄φ
,
f̄φ

f∗
φ

)
.

Note that the inner maximization forces the ratio to always be greater than
one. The outer maximization is the maximization over all flows, i.e., the worst
case flow. The median is taken over all topologies.

In both views of the error, we see that the error decreases with the number
of links. Further investigation is required to understand why this is the case.
Nonetheless, in both cases the error is quite small.

6 Stability

Section 4 showed that the time to convergence decreases when the step size, γ, is
increased. Furthermore, the previous section showed that the error is quite small
even for γ = 6. Moreover, the error decreases with the number of links. Hence,
increasing the step size may improve convergence while maintaining acceptable
error. However, we find that large step sizes can lead to instability and divergence.

For a particular topology, we define γ̄ to be the maximum value of γ such
that (4) is stable. Figure 4 shows minimum value of γ̄ where the minimum is
over all topologies with L links. Figure 4 also shows the median value of γ̄ over
all topologies with L links. While Figure 4 indicates that in some cases large
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values of γ might not cause instability, there are other topologies such that γ
must be rather small. Indeed, from Figure 4, we conclude that it is not possible
to reliably set γ larger than 6.

7 Online and Distributed Supergradient Optimization

In this section the possibility of distributing the supergradient optimization in
such a way that it supports online computation of assignments. By online we
mean that at each iteration, the assignment v (k) is used, i.e., the link bit-rates
are R (v (k) , l). This assignment is used for Δt seconds before a new assignment,
v (k + 1), is generated. Note that Δt is not necessarily the same as γ. However,
here we assume that γ = Δt.

We assume that the computation of a new assignment requires communication
with neighboring nodes. Recall that we assume that the v (k) ∈ arg maxv∈V∑

R (v, l) μl (k). Thus, in order to compute v (k) , each link must be aware of
μl (k) for all other links. Consequently, each iteration can be expensive in terms of
bandwidth, the resource that is being optimized. In order to preserve bandwidth,
one can set Δt large. In this section, the values of Δt studied range from 500 msec.
to 6 sec. Refer to Figure 2 for the number of iterations required for convergence.
For example, with 75 links and Δt = 500 msec, it will take 50000 seconds until
convergence.

Besides slow convergence, there are two performance problems with the online
approach, namely, the actual link utilization of congested links may be small and
queues occupancies can be very large. These problems are discussed next.

7.1 Link Utilization

When using TDM, a link is not able to transmit at all times. However, for
some time-slots, the link is able to transmit and it is expected that the link will
transmit continuously during that time-slot. If the link is unable to transmit
data throughout the entire time-slot, then it might be possible to either increase
the flow rates or use different assignment so that other links can transmit. If
either of these options is possible, then the network utility can be increased. On
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the other hand, it is possible that at optimality a link will have more bandwidth
allocated to it than is required to transmit the data passing over it. However,
from complementary sensitivity, for link l where this occurs, we must have μ∗

l =
0. Thus, if μ∗

l > 0, then we expect that link l will always send data when it is
allocated bandwidth, that is, the link will be fully utilized.

Since a radio cannot simultaneously transmit and receive on the same band-
width, when a node is transmitting, it must transmit data that is stored in its
queue. Thus, letting Ql (k) denote the queue occupancy of link l at the beginning
of the kth time-slot, a link is underutilized if Ql (k) < ΔtR (v (k) , l), i.e., more
data can be sent than is available in the queue. Thus, we define the utilization
of a link to be

ρl :=

∑
{k:R(v(k),l)>0}

min (Ql (k) , ΔtR (v (k) , l))

∑
{k:R(v(k),l)>0}

ΔtR (v (k) , l)
,

where {k : R (v (k) , l) > 0} is the set of time-slots for which link l is transmitting.
In the analysis that follows, the utilization is computed once the algorithm has
stochastically converged.

We approximate the queue occupancy with the following

Ql (k + 1) = min
(
Qmax, (Ql (k) + μl (k + 1)− μl (k))+

)
(7)

where Qmax is the size of the queue. Note that if Qmax =∞ and μ (0) = Q (0),
then μl (k) = Ql (k) for all k. Also, note that (7) is only an approximation
of the queue occupancy since it assumes that the arrival flow rate for link l
is
∑

{φ:l∈P(φ)} f∗
φ (μ (k)). However, upstream queue overflows could result in ar-

rival rates less than
∑

{φ:l∈P(φ)} f∗
φ (μ (k)). Nonetheless, the analysis that follows

uses (7).
There are two ways in which the traditional supergradient method results

in congested links having utilization that is less than one. First, as shown in
Figure 3, the larger that γ is, the larger the variations experienced by μ (k), and
hence the larger the variations experienced by Q (k). Consequently, when μ∗

l is
small for some link l, variations in μl (k) around μ∗

l will occasionally result in
μl (k) = 0. Similarly, occasionally Q (k) = 0, and hence ρl < 1.

While Q (k) = 0 will result in ρl < 1, this problem is most significant for links
with small μ∗

l . Considering sensitivity analysis3, these links with small μ∗
l are

not as critical as links with larger μ∗
l . Hence, if these less critical links do not

reach full utilization, it will not have a significant impact on the network utility
unless Δt is quite large (in which case, occasionally we will have Ql (k) = 0 for
links with large μ∗

l ). However, as discussed in Section 6, due to instability, it is
difficult to have Δt large.
3 By sensitivity, the Lagrange multiplier μl is related to the change in the network

utility due to a change in link resources. Hence, if μl is small, then decreasing the
data rate across link l will only have a small impact on the network utility. Thus, if
μ∗

l is small, then link l is less critical to the network utility.
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Fig. 5. Traditional subgradient methods can result in link utilization of less than one for
congested links (i.e., links with μl > 0). The above shows the median link utilization
where the median is over all links and all sampled topologies with L links. As the
Qmax → ∞, the median link utilization converges.

Finite queue sizes is a second cause of reduced link utilizations. For example,
since a node cannot send and transmit at the same time, if the maximum queue
size is zero (i.e., there is no queue), then ρ = 0. In general, finite queue size is not
a problem if Qmax ≥ maxl maxv∈V ΔtR (v, l). This condition can be conservative
since links with very high data rates might not be critical links (i.e., μ∗

l = 0),
and not all assignments v are used.

Figure 5 shows the median link utilization for different maximum queue sizes,
Qmax (only links with μ∗

l > 0 are considered). As expected, for very small sizes
of Qmax, the utilization is quite low. This is due to Qmax < ΔtR (v, l) for some l
and some v that is used by the schedule. When Qmax =∞, then the utilization
is less than one due to Ql (k) = 0 for some k and l. As can be seen, the median
link utilization is far from one in all cases.

7.2 Queue Size and Delay

An important drawback of the online implementation of the supergradient
method is that the link cost, μl, is tightly associated with the queue occupancy,
Ql. In the typical approach, μl = Ql. This is problematic since if the link cost is
high, then the queue occupancy will be large, resulting in long delays and con-
suming large amounts of memory resources. For example, in our experiments, it
was not uncommon to have μ∗

l > 100 bits/Hz. If the bandwidth is 20 MHz, as is
the case in 802.11b/g, this would result in nominal queue occupancies of 2Gb. As
discussed above, limiting the queue to smaller values decreases link utilization.

Another possible option is to somehow force Ql (k) = μl (k) − μ∗
l . In this

case, the queue is nominally empty and only grows when μl > μ∗
l . In this case,

delay is only caused by positive variations in μl. However, as shown in Figure 6,
even in this ideal situation, we find that the queue must be large. Indeed, when
Δt = 500 msec and the bandwidth is 20 MHz, we have some queue occupancies
that exceed 10 Mb.
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Fig. 6. Median of the Maximum Positive Deviation of μ − μ∗. The maximum is over
all links in the topology and over all time, and the median is over all topologies with
L links.

8 Conclusions

It is common to use a particular supergradient technique to maximize network
utility. This paper examines the performance of the traditional supergradient
technique and finds that in practice, it performs poorly. Specifically, conver-
gence is slow, and instability results if the step size is increased in an attempt
to improve convergence speed. An alternative ascent algorithm is found to con-
verge much faster. Another problem with the traditional supergradient approach
is that if it is distributed, then queue occupancies can become very large and
link utilization of critical links is below one. On the other hand, while the super-
gradient methods do not provide the exact solution (they oscillate around it),
the error is small.
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Channel Dependent Interference and

Decentralized Colouring

P. Clifford and D.J. Leith

Hamilton Institute, NUI Maynooth, Ireland

Abstract. We consider channel allocation to mitigate interference be-
tween wireless LANs. The channel allocation task is often formulated
in the literature as finding a proper colouring of a single graph. We
show that the interference between WLANs can be channel dependent
in which case a different conflict graph is associated with each channel.
Channel allocation then corresponds to a multi-graph colouring problem.
This potentially has profound implications as the behaviour of many pro-
posed colouring-based algorithms for channel allocation is unclear in a
multi-graph context. We prove that a recently proposed decentralized
colouring algorithm performs correctly in the multi-graph setting. We
also present a new, extended version of this algorithm suited to a wide
range of multi-radio architectures.

1 Introduction

We consider how a group of access-points/base-stations1 can configure their
channel choice so as to minimise interference between one another. This problem
has recently been the subject of an upsurge of interest in the WLAN literature,
e.g. see [2,3,4,5,6,7,8,9,10,11,12,13]. The channel allocation task is often formu-
lated in the literature as finding a proper colouring of a single graph. That is,
a conflict graph is constructed by associating a graph vertex with each WLAN
and inserting edges between WLANs that interfere. A non-interfering channel
allocation then corresponds to a proper colouring of this conflict graph. We
demonstrate that this formulation may be unrealistic. Specifically, we show that
the interference between WLANs can be channel dependent in which case a dif-
ferent conflict graph is associated with each channel. Channel allocation then
corresponds to a multi-graph colouring problem. This potentially has profound
implications as the behaviour of many proposed colouring-based algorithms for
channel allocation is unclear in a multi-graph context.

Our second main contribution is to establish that a recently proposed decen-
tralized colouring algorithm does indeed generalise to the multi-graph setting.
We also present a new, extended version of this algorithm suited to a wide range
of multi-radio architectures.
1 We use the term access point or AP to denote the co-ordinating station in a WLAN

that is responsible for channel selection. Consideration is not restricted to a specific
WLAN technology. Each AP has associated wireless client stations and we refer to
the collection of clients plus AP as a WLAN.

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 95–104, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Channel Allocation and Graph Colouring

The channel allocation task is usually formulated as a standard graph colouring
problem. For example, Figure 1 shows four interfering WLANs. Transmissions
within the AP1 and AP2 WLANs can interfere, with the interference range of
each WLAN indicated by the dashed circles in Figure 1. The level of interference
between any particular pair of transmissions depends on the physical locations
of the communicating stations. This can easily lead to complex hidden/exposed
terminal problems. For example, if AP2 transmits data to client 1 at the right-
hand edge of the figure at the same time as the client 2 station located at
the left-hand edge of the figure sends data to AP1, then reception by AP1
may be blocked by AP2’s transmission while AP2’s transmission is successfully
received at the right-hand station as this is beyond the interference range of
AP1. This is, of course, an example of hidden terminal behaviour, known to
have the potential to induce gross unfairness and reduced network utilisation.
Similarly AP3 and AP4’s transmissions can interfere creating further potential
for four-way hidden/exposed terminal behaviour.

Fig. 1. Example of interfering 802.11
WLANs. Dashed circles indicate interfer-
ence radius, shaded circles indicate com-
munication radius.

Fig. 2. Interference graph of Figure 1

The underlying channel selection problem in this example is equivalent to
graph colouring. To see this, define the interference graph by associating a node
with each WLAN (e.g. with each BSS in an 802.11 network) and inserting an
edge between nodes that interfere. For example, Figure 2 shows the interference
graph corresponding to the wireless network in Figure 1. A colouring of the
graph assigns colours to each node, and a proper colouring is an assignment
of colours to each node such that no adjacent nodes share the same colour. A
non-interfering channel allocation is then equivalent to a proper colouring of the
interference graph associated with a wireless network. Similar considerations
also apply in multi-hop multi-radio situations. For example, AP3 might be a
multiradio intermediate relay station with AP4 the only access point with a
wired backhaul link.
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3 Channel Dependent Interference

It is important to stress here that the use of circles to denote interference regions
in Figure 1 is an idealisation. Importantly, we note that since channel charac-
teristics are dependent on the frequency used, we can expect that the shape of
the interference regions will be channel dependent.

To investigate this question, we took measurements on an experimental
testbed. The testbed consists of 10 PC-based embedded Linux boxes based on
the Soekris net4801, 5 boxes configured as APs in infrastructure mode and 5
as client stations. We also use 5 PCs acting as monitoring stations to collect
measurements – this is to ensure that there is ample disk space, RAM and CPU
resources available so that collection of statistics does not impact on the trans-
mission of packets. These machines are setup as five WLANs (denoted WLAN
A - WLAN E) located in a university office space. All systems are equipped with
an Atheros 802.11a/b/g mini-PCI card with an external antenna. All nodes use
a Linux 2.6.16.20 kernel and the MADWiFi wireless driver. All of the systems
are also equipped with a 100Mbps wired Ethernet port, which is used for control
of the testbed from a PC. Specific vendor features on the wireless card, such as
turbo mode and channel scanning, are disabled.

The testbed hardware supports operation both in the 802.11a 5GHz band and
in the 802.11b 2.4GHz band. While spectrum analyzer measurements revealed
little external interference in the 5GHz band (a noise floor of around -80dB be-
ing typical), significant external interference was observed in the 2.4GHz band
which is attributed to bluetooth devices . Focussing on the 5GHz band, our
measurements indicated that the level of interference between WLANs can be
strongly channel dependent. For example, the measured interference level be-
tween WLANs B and C as the channel number is varied (with WLANs B and C
always sharing the same channel), varied from 0 on channel 36, to 27% on chan-
nel 56, and back to 1% on channel 64. This behaviour is perhaps unsurprising
as we can expect path propagation characteristics to be frequency dependent.
Nevertheless, it has profound implications for channel allocation algorithms. In
particular, it is in general not sufficient to confine consideration to a single con-
flict graph as shown for example in Figure 2, but rather a different conflict graph
may be associated with each available frequency channel. An immediate conse-
quence is that the channel allocation problem is not necessarily equivalent to
the standard colouring task on a single graph, but rather may involve a more
general multi-graph colouring task.

4 Implications for Channel Allocation Algorithms

The chromatic number (minimum number of colours for a proper colouring) of
the multi-graph problem is only weakly related to the constituent individual
graphs. We illustrate this by example.

Figure 3 shows the conflict graphs associated with channels 1,2 and 3 in a
network of 6 interfering WLANs and also shows a successful channel allocation
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Fig. 3. Multi-graph example 1. Individual channel conflict graphs shown with proper
colouring requiring only 3 colours.

using 3 channels. Although for each channel there is only one pair of nodes which
do not interfere, the arrangement is such that only three channels are necessary
to avoid interference, rather than the six which would be required if every node
interfered with every other on every channel. This example demonstrates that
the problem of multi-graph colouring is dramatically different to normal graph
colouring. To our knowledge, no analytic results are available on the perfor-
mance of colouring algorithms on multi-graphs. Existing convergence proofs for
distributed algorithms such as those in [8,10,13] relate to colouring of a single
graph. Centralised channel allocation algorithms based on single graph colouring
may exhibit unexpected behaviour in a multi-graph context.

Channel dependent interference also has direct implications for frequency hop-
ping approaches to channel allocation such as that in [5] and elsewhere. The
performance of heuristic algorithms is unclear.

5 Main Result

We refer to [13] for the decentralized channel allocation algorithm (Section 6
in this paper contains a generalisation). Let G(i) = (V, E(i)) denote the in-
terference graph associated with use of channel i in a wireless network. That
is, the vertices V of G(i) are the network WLANs and the edge set E(i) con-
tains an edge between vertices (u, v) when WLAN u and v interfere on channel
i. The interference environment is then characterised by the family of graphs
{G(i), i ∈ [1, 2, .., c]}. A non-interfering channel allocation is one where each
WLAN uses a channel i that is different from all of its neighbours in G(i). Note
that in the special case where G(i) = G∀i then the interference graph is the same
on every channel and we recover a standard single graph colouring problem.

Theorem 1. Suppose each vertex in V operates the CFL algorithm. Assume
that the channel allocation problem is feasible (i.e. a non-interfering channel
allocation does indeed exist). Then the CFL algorithm converges, with probability
one, to a non-interfering channel allocation.

Our proof also provides a partial answer to a further question, namely how
quickly the algorithm converges to a non-interfering allocation. The stopping
time is the time taken for the algorithm to converge. We have the following
property.
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Corollary 1. Let τ denote the stopping time of the CFL algorithm. Then prob[τ >
k] < αe−γk, for positive constants α, γ.

Our argument does not yield a tight estimate of the exponent γ, which deter-
mines the precise convergence rate of the algorithm, but given that the underly-
ing colouring problem is NP-hard this is unsurprising. Extensive simulations not
presented here demonstrate that the convergence is rapid on average, similarly
to the simulations presented in [13] for the single graph case.

We will show that in a determined finite amount of steps the system has some
minimum positive probability of convergence. We show that starting from any
configuration the system can reach some standard state after two steps. From this
standard state we show that the system can then potentially reach a state where
every node experiences a failure simultaneously, allowing convergence without
issues of dependence between nodes. Hence the network always has positive
probability of global success and so will almost surely converge.

In the sequel we refer to two nodes choosing the same channel as a “collision”.
We say that the state S consists of the set of all possible configurations where
(i) the channel selections of at least two nodes interfere and (ii) at all colliding
nodes the selection probability for every channel is bounded away from zero (in
fact, we will consider the case where they are strictly greater than b(1−b)

c−1 ). We
define the master graph: an edge is in the master graph if it is in any of the
individual channel graphs G(i), i ∈ [1, 2, .., c]. Denote the maximum node degree
of the master graph by md and the diameter of the master graph (length of the
longest shortest path between two nodes) by D.

Consider a colliding node. Observe from [14] that a node colliding on one
colour and then on a different colour ensures that its selection probabilities for all
channels are strictly greater than b(1−b)/(c−1). Similarly if a node succeeds and
then collides. However, it can be seen that repeated collisions on the same channel
can result in the channel selection probability becoming arbitrarily small. Thus,
the system may avoid state S by some node undergoing repeated same channel
collisions. We show in Lemma 1 that if the system has reached a configuration
with some channel selection probabilities lower than b(1 − b)/(c − 1) at one or
more colliding nodes, then there is a positive lower-bounded probability that it
will return in two steps to our standard state S. The following Lemma is proved
in [14].

Lemma 1. From any configuration of the system, if after two steps the system
has not converged, it is in state S with some probability pr5 > 0. �

We proceed by defining the directed graph DG which is dependent on the current
channel selection by the network nodes. There is an edge in DG from node u
to node v if an edge exists between u and v in the graph G(iv) where iv is
the channel currently chosen by node v. We say v is a DG-neighbour of u. The
edges directed into a node v are determined by the channel selection of that node
together with the conflict graphs G, but are unaffected by the channel selections
of other nodes. Existence of a directed path in graph DG from node u to node
v indicates that the node u can potentially force a collision at node v (by first
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generating a collision with its immediate neighbour, which in turn can generate
a collision with its neighbour, and so on until node v is reached).

DG-graphs associated with an example network are illustrated in Figure 5.
Consider the lower left node. Edges involving this node only exist on channel R.
Hence, this node can potentially create collisions with its neighbours by selecting
channel R. However, by selecting channel B, the lower left node can always avoid
interference from any of the other nodes regardless of their channel selection.
This asymmetric nature of the relationship between the lower left node and its
neighbours is indicated by the directional arrows on the DG-graph links.

Note also that once it chooses channel B, the lower left node in Figure 5 is
unreachable from the other nodes. Since it is unreachable, no collisions can oc-
cur, choice of channel B will yield a “success” in the CFL algorithm and the
node will remain on channel B thereafter i.e. the node will be converged and
permanently unreachable. That is, the CFL algorithm therefore ensures that
unreachable nodes remain permanently unreachable. A second example illus-
trating this behaviour is also given in the right-hand graphs in Figure 5. These
examples illustrate the general point that as the CFL algorithm proceeds con-
nectivity can change and, in particular, certain nodes may become permanently
unreachable and we need to take account of this when analyzing convergence.

We define the set of nodes CN to be all nodes which are unreachable from any
node which just collided. We note that any node w ∈ CN must have just been
successful. In addition, no matter what colour choices other nodes make in the
future, w will never subsequently undergo a collision (since w is unreachable).
Hence any nodes in CN are converged and can be ignored for the remainder
of the proof. Note that the graph DG changes as the algorithm proceeds, and
nodes can join CN but will never leave. In Figure 5 we see two stages of the
algorithm, the corresponding DG, and the set CN illustrated by nodes in bold.
Lemma 2. Suppose that the system is in state S. There exists a specific evolution
E of the system which results in all nodes not in CN colliding.

Proof of Lemma 2. Consider one of the collisions. Two nodes k1 and k2, say,
have just experienced a collision. By way of notational convenience we say these
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Fig. 4. Illustrating definition of DG-graphs. Upper graphs show node channel selec-
tions and the channel-dependence of edges is indicated by labels. Lower graphs show
corresponding DG-graphs. The set CN indicated by nodes in bold.
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two nodes were visited at step 2. Suppose now that k1 collides with its first non
visited DG-neighbour k3 (if any) at step 3. Suppose also that k2 collides with
its first non visited DG-neighbour (if any, potentially k3 also) at step 3 also.
We say that such nodes are visited at step 3. Inductively suppose now that a
node once visited collides with all its nonvisited DG-neighbours in consecutive
steps. This is possible because a visited node having just collided can potentially
choose any channel. Note that a node being visited simultaneously (along two
different equal length paths from k1 and k2 say) is also possible.

Suppose that once a node has collided with all its nonvisited neighbours it
then repeatedly chooses channel 1 until step T1 = T0 + 3 + md × D. We note
that as a node k4 is colliding with its nonvisited DG-neighbours some of them
may become visited from other nodes before they collide with k4; we suppose
then that k4 does not visit such nodes.

Concurrently with this visiting procedure starting at the nodes k1 and k2,
we can suppose that the same visiting procedure starts at all nodes in JC, and
traverses the graph as before. Again as a node k5 is colliding with its nonvisited
DG-neighbours some of them may become visited from other nodes, and we
again suppose that k5 does not visit such nodes.

When all the visited nodes have visited all their neighbours, every node not
in CN has been visited and is choosing channel 1. Some nodes which are now
choosing channel 1 may of course have entered the set CN and are ignored.
Hence every node not in CN is colliding. At the next time step we suppose that
every node chooses a colour so that no collisions occur. �

Lemma 3. Suppose that there exists a choice of channels that yields a non-
interfering allocation. There is a strictly positive lower bound pr8 on the proba-
bility of the evolution E occurring from any configuration in state S.

Proof of Lemma 3. Given the initial colour selection probabilities and the
set JC, the evolution E is well defined. The duration of E is at most md × D
timesteps. Hence E has some positive (computable) probability pr6 of occurring
since the system is finite.

By assumption the system begins in state S and so the initial colour selection
probabilites of just collided nodes are lower bounded; therefore there is some
probability pr7 > 0 such that pr6 > pr7 irrespective of the initial colour selection
probabilities.

The set JC is one of finitely many possibilities and so again there is some prob-
ability pr8 > 0 such that pr7 > pr8 irrespective of the initial choice of JC. �

Proof of Theorem 1. Defining pr9 = pr8pr5 gives the probability that the
system is in state S after the first two steps and then follows evolution E. Hence
every 2 + md ×D steps the system will converge with probability at least pr9.
Hence after j(2 + md × D) steps we have converged with probability at least
1− (1− pr9)j which converges to 1 as j →∞. �
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6 Multiple Radios

The use of wireless access points equipped with multiple radios has been the sub-
ject of much recent interest. The CFL algorithm can be applied without change
to multi-radio access points by running a separate copy of the CFL algorithm for
each radio. This will yield a non-interfering channel allocation for every radio. In
this section we illustrate that the CFL algorithm can be further generalised to take
explicit account of bit rate requirements in a multi-radio setting.

Specifically, we consider the following task. Suppose we have a set of interfering
WLANs (possibly with channel-dependent interference) and a set C of available
channels. Let bi denote the bit rate associated with channel i. At access point j we
require to select a non-interfering set of channels C ⊆ C such that

∑
i∈C bi ≥ B

and with cardinality |C| ≤ r, where r is the number of radios at the access point.
Note that the channel bit rate bi, the target bit rate B, number of radios r and
set of available channels C may be different for each access point.

The change here over our previous discussion is the inclusion of the bit rate
constraint

∑
i∈C bi ≥ B. Such a bit rate requirement arises, for example, when

striping data across multiple radios. One advantage over simply allocating a
channel to every available radio is that it may be that fewer radios are sufficient
to provide the required bandwidth, thereby reducing the load on the spectrum
in dense WLAN deployments. This formulation also allows us to take explicit
account of the different quality of each channel – this can be important in multi-
radio settings where radios are heterogeneous e.g. some radios might be 802.11
based and others 802.16 based. We note that the bit-rate constrained channel al-
location problem is also relevant to dynamic spectrum management in wired DSL
lines (where cross-talk across wiring bundles is a significant source of interfer-
ence) [15]. We introduce the following generalised version of the CFL algorithm
to solve the multiple radio bit-rate constrained channel allocation problem.

Let c denote the number of available channels at an access point and the access
point maintain a c element state vector p with element pi corresponding to the
probability of transmitting on the ith channel. Since we allow use of multiple
radios, note that we do not require the pi’s to sum to one. Consider the following
decentralized algorithm for updating p.

Generalised CFL Algorithm

1. Initialise p = [r/c, r/c, . . . , r/c]
2. Pick a random ordering of the channels. In that order, toss coins to activate

channel i with probability pi. Stop immediately once the AP’s target bit rate
is met. This results in a set C of active channels.

3. If
∑

i∈C bi < B, multiply every probability by 1 + b, set C = ∅, and repeat2

step 2. We note that the random selection process at step 2 above together with
the redistribution of probability in step 6 below, ensures that there is a positive
lower bound on the probability of any feasible allocation after a collision.

2 The precise procedure here is not important. The feasible active set may be found in
any reasonable fashion provided any channel with nonzero pi might be active and that
channels with larger pi are more likely.
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Fig. 6. Possible final result of multiple ra-
dio algorithm. The figure shows a success-
ful channel allocation.

4. Sense the quality of the channels in set C. We obtain “success” on channel
i ∈ C if this does not interfere with any neighbouring WLAN and otherwise
have a “failure”.

5. If we have success on all active channels, update p as

pi = 1 ∀i ∈ C, pj = 0 ∀j /∈ C (1)

i.e. on a successful choice we use the same set of channels for the next round.
This ensures that any channel allocation that satisfies the target bit rate and
also removes interference between all WLANs is an absorbing state.

6. Otherwise let S denote the set of channels which were successful, F the set
of failed channels and I the set of inactive channels. Update p as

pi = 1 ∀i ∈ S,

pj = (1− b)pj + b ∀j ∈ I,

pk = (1− b)pk ∀k ∈ F.

The lower bound on these probabilities after the node fails is much more
important than the exact choice of parameters.

7. Return to 2.

This algorithm maintains the three key properties of the original CFL algo-
rithm, namely (i) that if every WLAN is successful the system remains in this
successful configuration henceforth; (ii) after a collision any feasible channel al-
location is possible; and (iii) if one WLAN is failing the failure can propagate to
neighbouring WLANs and force them (with some probability) to change their
channel allocation. Hence by a similar proof to that for Theorem 1 the general-
ized CFL algorithm will converge with probability 1 to a non-interfering channel
allocation satisfying the specified bit rate requirements, provided one exists.

In Figure 5 we present an example of the multiple radio problem. Suppose
that every AP has bit rate demand 3 units; suppose that channel 2 has bit rate
3 units and that all other channels have bit rate 1 unit. Figure 6 illustrates a
feasible channel allocation which is a result of the algorithm.
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7 Conclusions

We show that the interference between WLANs can be channel dependent in
which case a different conflict graph is associated with each channel. This po-
tentially has profound implications as the behaviour of proposed colouring-based
algorithms for channel allocation is unclear in a multi-graph context. We are,
however, able to show that a recently proposed decentralized colouring algorithm
does generalise to the multi-graph setting. We also present a new, extended ver-
sion of this algorithm suited to a wide range of multi-radio architectures. This
work was supported by Science Foundation Ireland grant IN3/03/I346.

References

1. L. Tassiulas, A. Ephremides, “Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks”,
IEEE Trans Automatic Control, 37 (12), 1992.

2. A. Akella, G. Judd, P. Steenkiste, and S. Seshan. “Self management in chaotic
wireless deployments”. In MobiCom, 2005

3. H. Luo, P. Medvedev, J. Cheng, S. Lu, “A self coordinating approach to distributed
fair queuing in ad hoc wireless networks”, Proc. of IEEE INFOCOM ’01, 2001.

4. A. Raniwala, T. Chiueh. “Architecture and algorithms for an IEEE 802.11-based
multi-channel wireless mesh network”. In Proc IEEE International Conference on
Computer Communications, 2005.

5. A.Mishra, V.Shrivastava, D.Agarwal, S.Banerjee, S.Ganguly, Distributed Channel
Management in Uncoordinated Wireless Environments. In MobiCom, 2006.

6. A.Mishra, V.Brik, S.Banerjee, A.Srinivasan, W.Arbaugh, “A Client-Driven Ap-
proach for Channel Management”. Proc. IEEE INFOCOM, 2006

7. B.J. Leung, K.K. Kim, “Frequency assignment for IEEE 802.11 wireless networks”.
Proc. 58th IEEE Vehicular Technology Conference, 2003.

8. B. Kauffmann, F. Baccelli, A. Chaintreau, K. Papagiannaki, C. Diot, “Self Organi-
zation of Interfering 802.11 Wireless Access Networks,”, INRIA Technical Report,
August 2005.

9. A. Subramanian, H. Gupta and S. R. Das, “Minimum interference channel assign-
ment in multi-radio wireless mesh networks” Proc. Mobicom, 2006.

10. B.J.Ko, V.Mishra, J.Padhye, D.Rubenstein, “Distributed channel assignment
in multi-radio 802.11 mesh networks”. http://www1.cs.columbia.edu/~danr/

publish/2006/jun-tr06.pdf
11. A. K. Das, S. Roy and R. Vijaykumar, “Static Channel Assignment in Multi-radio

Multi-channel 802.11 Wireless Mesh Networks: Issues, Metrics and Algorithms”.
Proc. IEEE Globecom, 2006

12. K. Ramachandran, E. Belding, K. Almeroth, M. Buddhikot, “Interference-Aware
Channel Assignment in Multi-Radio Wireless Mesh Networks”. Proc. IEEE INFO-
COM, 2006.

13. D.J. Leith, P. Clifford, “A Self-Managed Distributed Channel Selection Algorithm
for WLANs”. Proc. ACM/IEEE RAWNET, Boston, 2006.

14. D.J. Leith, P. Clifford, “Convergence of Distributed Learning Algorithms for Op-
timal Wireless Channel Allocation”. Proc. IEEE CDC, San Diego, 2006.

15. T. Starr, J.M. Cioffi, P. Silverman, “Understanding Digital Subscriber Lines”,
Prentice Hall: Upper Saddle River, NJ, 1999.

http://www1.cs.columbia.edu/~danr/publish/2006/jun-tr06.pdf
http://www1.cs.columbia.edu/~danr/publish/2006/jun-tr06.pdf


Optimal Call Admission Control for an IEEE

802.16 Wireless Metropolitan Area Network

Sondes Khemiri1, Khaled Boussetta2, Nadjib Achir2, and Guy Pujolle1
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Abstract. This paper focus on optimal Call Admission Control (CAC)
policy for an IEEE 802.16 Wireless MAN. This policy has two objectives:
(i) statistically guarantee the QoS of UGS, rtPS and nrtPS connections,
(ii) maximize the average revenue of the wireless link. To find such op-
timal policy, we model our CAC agent as a Constrained Semi-Markov
Decision Process (CSMDP). To the best of our knowledge, the only algo-
rithm able to compute the optimal control policy of a CSMDP is based
on the Linear Programming (L.P.) approach. Unfortunately, a realistic
CAC problem with a large states space is intractable with the L.P. al-
gorithm. Our work presents two contributions. First, the proposition of
an optimal CAC for Triple-Play services support over a 802.16 WMAN.
Second, the presentation of an alternative iterative algorithm that can
be used to overcome the difficulties faced by the L.P. approach.

1 Introduction

The IEEE 802.16 standard [1] has been developed keeping in view the stringent
QoS requirements of Triple-Play applications. Indeed, IEEE 802.16 defines four
QoS scheduling services that should be treated appropriately by the MAC layer,
namely; Unsolicited Grant Service (UGS), Real-Time Polling Service (rtPS),
Non-Real-Time Polling Service (nrtPS) and Best Effort service (BE). UGS is
designed to support real-time services that generate CBR or CBR-like flows, such
as Voice over IP. When using UGS the Base Station (BS) provides fixed size data
grants on a periodic basis, without any explicit Subscriber Stations (SS) requests.
rtPS is designed to support real-time services that generate delay sensitive VBR
flows, such as MPEG video or VoIP (with silence suppression). Each service flow
is polled using periodic unicast request opportunities, in order to meet the flow’s
real-time needs and allow the SS to specify the size of the desired grants. nrtPS
is designed to support delay-tolerant data delivery with variable size packets,
such as high bandwidth FTP. The nrtPS connections use more periodic spaced
request opportunities than rtPS. And finally, the BE service is proposed to be
used for best effort traffic where no throughput or delay guarantees are provided.

The Base Station manages the radio resources. Consequently, it incorpo-
rates a Call Admission Control (CAC) agent, which guarantees that the QoS
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requirements are satisfied. Precisely, before any connection establishment, each
SS inform the BS about their QoS requirements. The CAC agent decides whether
a connection request could be accepted or should be rejected.

Although there are substantial literatures on Call Admission Control (CAC),
little of them concentrated on the IEEE 802.16 Standard. In both [2] and [3]
the authors propose a CAC strategy based on thresholds. Unfortunately, none
of them attempted to compare the performance of their proposal to an optimal
CAC policy. In this paper, we investigate the proposition of an optimal CAC
policy for an IEEE 802.16 Wireless MAN. This policy has two objectives: (i)
statistically guarantee the QoS of the various scheduling services defined in the
IEEE 802.16 standard, (ii) maximize the average gain of the wireless link. To find
such optimal policy, we model our CAC agent as a Constrained Semi-Markov
Decision Processes (CSMDP).

This paper is organized as follows. In the next section we will describe the back-
ground and formulate the CAC problem. We also detail the resulting CSMDP
model. Our resolution algorithm will be described in section 3. Results will be
discussed in section 4. Finally, we conclude this paper in section 5.

2 Problem Statement

2.1 System Modeling

We are interested in an IEEE 802.16 2004 cell, which serves fixed residential
Triple play subscribers. Those can have access to various types of applications
like telephony, Video on Demand and file downloading. The standard 802.16
2004 defines two modes of QoS grant; either by SS (aggregated traffic) or by
connection. In this work, we address the second case. Thus the base station has
to provide QoS guarantees for 3 service classes. Namely, UGS, rtPS and nrtPS,
which we denote as class 1, 2 and 3, respectively. In this study, we consider
that the wireless link is the main bottleneck and that the bandwidth is a crucial
resource that has to be shared.

The available bandwidth in an 802.16 cell depends on the physical layer char-
acteristics. Especially, on the modulation technique that is used in an area. Gen-
erally, the modulation technique is chosen according to the distance separating
the SS to the BS (More robust techniques are used for distant SSs). We assume
that the cell’s bandwidth is totally partitioned, so that each partition is adapted
to a specific modulation scheme. The system S that we are modelling in this
paper, focus on one link direction (e.g. downlink) and address one modulation
technique’s clients area. Note that this modelling assumption relies on the fact
that we are considering residential subscribers.

We assume that the offered bandwidth capacity of the system S is a fixed
number of bandwidth units, that we note C. During its duration, each UGS call
needs a constant bit rate guarantee. That is, in S, a class 1 call requires the
allocation of a given number of bandwidth units. For convenient presentation
reason, we indifferently denote this number as, s1, s1or s1.
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rtPS calls generate variable bit rate traffic and require strong guarantees on
QoS delay parameters. We consider that these constraints could be satisfied if
s2, the bandwidth units number assigned to a class 2 call in S, is comprised
between two limit numbers, which we note as s2 and s2 for lower and upper
limits, respectively. Similarly, nrtPS calls, generate variable bit rate traffic but
are less constringent on QoS delay parameters than rtPS ones. Therefore, a class
3 call needs the allocation of bandwidth units number, which we note s3. We
also suppose that nrtPS QoS guarantees could be meet if s3 ∈ [s3, s3].

In order to obtain a tractable analytical modelling of the CAC problem (with
a limited states space dimension), we suppose that all calls of a given class i
are assigned the same si ∈ [si, si] bandwidth units. This assumption may not
leads to an optimal radio resource efficiency, but is motivated by the fact that
the resulting states space description of our system will be given by only the
number of ongoing traffic i calls.

Since an IEEE 802.16 2004 cell’s coverage can reach a diameter of several
kilometers, we could reasonably assume an infinite population traffic model.
Precisely, we suppose that calls of class i ∈ {1, 2, 3} arrive according to a Poisson
process with rate λi. A call of class i ∈ {1, 2, 3} may be rejected if its acceptance
violates the QoS guarantee of ongoing calls or if the system does not have enough
resources. Otherwise, it is accepted and will generate a revenue at a rate Ri

during the call holding time, which is exponentially distributed with mean μ−1
i .

For instance, the revenue rate could correspond to the amount of money per
second earned by the system for carrying this call. Note that, although s2 and s3

may vary according to system states (see section 2.2), we assume that the holding
times of class i ∈ {1, 2, 3} calls are independent of the allocated bandwidth.

Following this system modelling, we consider that the packet-level’s QoS pa-
rameters (loss rates, delays, jitters etc.) of a class i call are statistically guaran-
teed in the wireless link part of the WiMAX network as long as the allocated
bandwidth si remains in the [si, si]. We can then focus on the connection-level’s
QoS parameters, namely the call blocking probability. Formally, we would like to
find the optimal CAC policy solution, π∗, to the following optimization problem:

1. maximize the average revenue R (π∗) of S
2. ∀i ∈ {1, 2, 3}, guarantee that the call blocking probability Pi (π∗) remains

under a threshold βi,

2.2 Priority-Based Bandwidth Sharing Scheme

For an UGS traffic the required amount of bandwidth units is fixed. So, only
acceptance or rejection of a class 1 call has to be decided by the CAC policy.
However, for i ∈ {2, 3}, si only needs to remain in [si, si]. We propose to exploit
the flexibility of rtPS and nrtPS bandwidth requirements, so that the possi-
ble number of simultaneous calls carried by the system (and consequently the
revenue) is maximized. For that purpose, we consider a classical priority-based
bandwidth sharing strategy. Our choice is not only motivated by its implemen-
tation simplicity, but also because it led us to a tractable analytical modelling
of the CAC problem.
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Priority levels of our bandwidth allocation strategy are decremental from class
1 down to class 3. Precisely, let Ω be the states space descriptor of the system
and Si (x) is the aggregated bandwidth allocated to class i calls when the system
is in state x. Our bandwidth sharing strategy relies on these rules:

– When a class 1 call request arrives and the remaining available bandwidth
units are less than s1, then the BS resource manager check if it’s possible to
iteratively decrease S3 (x) until that s1 free bandwidth units are made avail-
able. Degradation attempt of the aggregated nrtPS bandwidth is stopped if
s3 = s3. If this threshold is reached, while the freed bandwidth is not enough
to handle the arriving UGS call, then degradation of aggregated rtPS traf-
fics is checked in the same meaner as for nrtPS. This process is stopped as
soon as s1 bandwidth units are made available, or if ∀i ∈ {2, 3} , si = si.
Note that the degradation is operationally performed only if (1) it leads to
liberate s1 bandwidth units and (2) the CAC policy decides to accept the
new class 1 call.

– When an rtPS call request arrives and the remaining available bandwidth
units are less than s2, then the degradation attempt of aggregated nrtPS
bandwidth, eventually of rtPS, is performed following the rules described in
previous paragraph.

– When an nrtPS call request arrives while the remaining available bandwidth
units are smaller than s3, then only degradation attempt of aggregated nrtPS
bandwidth is authorized.

– When a call leaves the system and ∃i ∈ {2, 3} such that si < si, then the
freed bandwidth is shared following an upgrading priority-based strategy.
First, the available bandwidth is fairly shared between rtPS calls. Then,
once s2 = s2 the remaining bandwidth is equitably allocated to nrtPS calls
with the aim to make them reach the upper limit s3.

Here, it’s important to notice that as ∀i ∈ {2, 3} si > 0 then our degradation
strategy never leads to the preemption of any ongoing call. We also recall the
reader, that all calls of a given class i are assigned the same bandwidth capacity
si. Therefore, the bandwidth upgrading (resp. degrading) of a given class is
performed if all calls of that class are identically augmented (resp. reduced)
by the same amount of bandwidth units. Based on our system description, the
optimal CAC policy could be computed using the CSMDP framework.

2.3 The Constrained Semi-markov Decision Process

Markov Decision Processes (MDP) are often used to obtain optimal control poli-
cies. A complete survey of successful use of MDP in telecommunications prob-
lems can be found in [4]. An CSMDP can be described by a tuple {Ω, A, R, P},
where each element is detailed in the following paragraphs:

The states space descriptor Ω. The states space descriptor Ω is defined as
the set of allowed states of S. In our case study, each state of S can be described
by a state vector x = (x1, x2, x3) where, ∀i ∈ {1, 2, 3}, xi denotes the number of
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ongoing traffic i calls. Taking into account the priority-based bandwidth sharing
scheme, we could easily see that:

Ω =

{
x

∣∣∣∣∣

3∑

i=1

xisi ≤ C

}
(1)

The actions space of the control process A. For each request, the CAC
agent’s action could be an acceptance or a rejection. The agent that we model
in this section has the same behaviour as the one described in [15]: our CAC
agent “computes” its decision to accept or to block a new call in advance, i.e.
before the arriving of such request. Thus, when S is in state x ∈ Ω, in prevision
of the arrival of a new call request, the CAC agent choose an action vector
aπ (x) = (aπ

1 (x) , aπ
2 (x) , aπ

3 (x)) ∈ A following a CAC policy π. The value of
each element aπ

i (x), ∀i ∈ {1, 2, 3}, indicates to the system the appropriate action
to be executed if the next arriving event is call request of class i. More precisely,
each element takes the value 1 whenever the CAC agent recommends accepting
the call, and 0 otherwise. Therefore, the action space can be expressed as follow

A = {a = (a1, a2, a3) | ai ∈ {0, 1}∀i ∈ {1, 2, 3}} (2)

Note that in some states of Ω, the remaining free resources in S are not
sufficient to accept a new call. Therefore, for some call requests, the only allowed
action in these states is the rejection. Thus, each vector action aπ (x) belongs to
the subset A (x) ⊆ A of the allowed actions when S is in state x. Obviously,

A (x) = {a ∈ A | ai = 0 if x + ei /∈ Ω, ∀i ∈ {1, 2, 3}} (3)

Here, the event ei refers to the arrival in S of a class i call request, and x + ei

denotes the new transition state if the CAC agent decides to accept the call.

The set of rewards R perceived by the system. By definition, R =
{R (x, a) | ∀x ∈ Ω, ∀a ∈ A (x)}, where R (x, a) is the reward perceived by the
system if the CAC agent chooses the vector action a ∈ A (x) while S is in the
state x ∈ Ω. Let τ (x, a) be the expected sojourn time of S in the state x when the
agent chooses the action vector a ∈ A (x), and note R (x) as the reward rate per-
ceived by the system when S is in the state x ∈ Ω. Then, R (x, a) = τ (x, a) R (x).
According to our model description, we can easily get that:

τ (x, a) =

[
3∑

i=1

λiai + xiμi

]−1

and R (x) =
3∑

i=1

Rixi (4)

The set of transition Probabilities P =
{
Pxay |∀ (x, y)∈Ω2, ∀a∈A (x)

}
.

where Pxay denotes the transition probability from the state x to the state y if
the vector action a is chosen by the agent while Xt was in state x. Obviously:

Pxay =

⎧
⎨

⎩

λiaiτ (x, a) if y = x + ei ∀i ∈ {1, 2, 3}
xiμiτ (x, a) if y = x− ei ∀i ∈ {1, 2, 3}
0 otherwise

(5)
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2.4 Limitations of the Classical CSMDP Resolution Method

The general form of an optimal control policy of a CSMDP belongs to a particular
subset, called the set of randomized stationary policies [5]. A policy π is said
randomized stationary policy if the action a is chosen when the system S is in
state x according to a probability pπ (x, a). To the best of our knowledge, the only
method that can determine the optimal randomized control policy of a CSMDP
is based on the Linear Programming (L.P.) approach [5]. In our case study, the
execution of this algorithm will requires the storage of a data matrix who’s size is
proportional to |Ω|∗8 (8 is the cardinality of A). Unfortunately, the size of |Ω| will
increase exponentially with the number of resources units C. For example, if C =
100 and ∀i ∈ {1, 2, 3} si = 1 then |Ω|=176851. Clearly, finding the probabilities
pπ∗

(x, a) ∀x ∈ Ω and ∀a ∈ A(x) will necessitate important storage capacity
and processing time by the computing machine. Several papers have pointed out
the computational limitations relating to Markov Decision Process framework
[6,7]. Nevertheless, in the best of our knowledge, all of the proposed solutions to
overcome this problem have been made targeting the basic (unconstrained) MDP
context. Thus, they are unfortunately not directly applicable to our Constrained
Semi-Markov Decision Process.

3 Our Proposed Computational Method

3.1 Basic Idea

The solution that we propose in this paper uses some well known results issued
from the optimization under constraints field: a very popular approach to re-
solve a constrained optimization problem is to use a relaxation technique. The
basic idea is to relax the constraints of the problem by integrating them into
the objective function. The objective function will be penalized each time a so-
lution did not satisfy a constraint. Consequently, using a relaxation technique,
a primal constrained problem is turned into two dual sub-problems: one mas-
ter subproblem focusing on how to relax the constraints of the primal problem,
and a slave submaster, which resolves the resulting unconstrained optimization
problem. In the literature, there are many relaxations methods (see [8,9] for a
complete review). They differ on the way how the objective function is penalized
each time a solution did not satisfy a constraint. A well adapted method for our
CAC problem is the Lagrange multiplier method.

Applying the Lagrange multiplier method to our case study, we introduce the
Lagrange function:

L (π∗ (ω) , ω) = R (π∗ (ω))−
3∑

i=1

ωi (Pi (π∗ (ω))− βi) (6)

where, ω = (ω1, ω2, ω3) is the Lagrange Multiplier vector and π∗ (ω) is the
optimal CAC policy obtained by resolving the slave sub-problem. Since the salve
subproblem resolution is executed after the master subproblem, then π∗ (ω) is
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dependent on ω. Our primal problem is now transformed into a dual problem.
The latter one is decomposed into two subproblems, which have to be successively
resolved:

1. A master subproblem, which seeks to obtain the optimal vector

ω∗ = arg min
ω∈IR 3

+

L (π∗ (ω) , ω) (7)

2. A slave subproblem, which, depending on a given ω, computes the optimal
CAC policy

π∗ (ω) = arg max
π

L (π (ω) , ω) (8)

3.2 Resolving the Slave Subproblem

The idea of using the Lagrange multiplier method in the context of CMDP
was first discussed in [10]. Then, the investigations were extended in [11] to the
case of CSMDP. Latter, [12] generalized these studies to CMDP with counted
states space. In all these papers, the authors consider only one constraint. In
addition, none of the mentioned works have provided details on how to compute
the optimal Lagrange multiplier value.

Multi-Constrained SMDP have been addressed by Altman (see [13] for a com-
plete review). Compared to these works, our main contribution relies on the res-
olution of the master and slave subproblems. The main idea of our method is
based on the results obtained by Altman in [14]. Applying this work to our case
study, we could show that resolving the slave subproblems leads to obtain the
optimal CAC policy of a particular unconstrained SMDP(ω). The tuple charac-
terizing this SMDP is dependent on the value of the Lagrange multipliers vector
ω. Precisely, if we note R (ω, x, a) =

∑3
i=1 Ri(x) + ωiai, then the SMDP(ω) is

described by the tuple {Ω, A, R (ω) , P}, where

R (ω) = {R (ω, x, a) | ∀x ∈ Ω, ∀a ∈ A (x)} (9)

In his papers, Altman suggest the use of an L.P. algorithm to resolve the slave
subproblem and a dual L.P. algorithm for the master subproblem. Due to the
computational states space difficulties discussed previously, our CAC problem is
intractable using the Altman’s approach.

Since solving the slave subproblem leads to finding the optimal control pol-
icy of the SMDP(ω), we suggest the use of the Value Iteration Algorithm with
dynamic relaxation factor [5]. This method is more robust and less resources
demanding. In particular, as in [15] we could easily show that only 3 tests are
needs in each iteration to determine the optimal action vector of a state. That
is, the algorithm complexity is on O(|Ω|3) (instead of O(|Ω|8) for the L.P. ap-
proach). In addition, methods proposed to address (unconstrained) MDP states
space reduction, could now be considered when resolving the SMDP(ω).

Note that the CAC policy obtained by our method is not necessarily the
optimal solution of our CAC optimization problem. In fact, the optimal control
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policy of an unconstrained SMDP is not a randomized stationary policy. It rather
belongs to a more restrictive set: the subset of deterministic stationary policies.
A policy π is a deterministic stationary policy if ∀x ∈ Ω and ∀a ∈ A, pπ (x, a) = 1
or 0. In reality, our CAC policy is quasi-optimal. Indeed, in [15] the authors show
that the optimal control policy of a CSMDP with m constraints will have at most
m actions chosen according to a probability value, while all the remaining actions
will be chosen in a deterministic way (I.e. with probability equal to 1 or 0).

Applying the Value Iteration method to the SMDP(ω) will provides the opti-
mal action vectors aπ∗

(x) ∈ A for all states x ∈ Ω. We could then compute the
call blocking probability ∀i ∈ {1, 2, 3} as,

Pi (π) =
∑

x∈Ωπ

(1 − aπ (x))P π (x) (10)

where Ωπ is the states space accessible by the system, and P π (x) is the resulting
steady state x probability. These steady state probabilities could be obtained
using a numerical method (e.g. Gauss Seidel) [16]. Finally, let ρi = λi

μi
, ∀i ∈

{1, 2, 3}. We could easily derive the average revenue rate obtained by the system,
when the CAC agent apply the policy π, as

R (π) =
3∑

i=1

Riρi (1− Pi (π)) (11)

3.3 Resolving the Master Subproblem

Following the Lagrange Multiplier method, the master subproblem resolution
aims to determine the solution to equation 7. For that purpose, we use the
Gradient Incremental Method, which is based on iterative executions. During
its nth iteration a vector ωn is computed following the direction given by the
gradient ∇ωL

(
π∗ (ωn−1

)
, ω
)
. Here, π∗ (ωn−1

)
is the optimal CAC policy of the

SMDP
(
ωn−1

)
and sn ∈ IR + is a chosen step. Formally,

ωn
i =

[
ωn−1

i − sn ∂L
(
π∗ (ωn−1

)
, ω
)

∂ωi

]+

, ∀i ∈ {1, 2, 3} (12)

Clearly, ∀i ∈ {1, 2, 3} ,

∂L
(
π∗ (ωn−1

)
, ω
)

∂ωi
= βi − Pi

(
π∗ (ωn−1

))
(13)

Note that the step sn have to be judiciously adjusted during the nth iteration,
so that convergence to the optimal solution of equation 7 is (1) guaranteed and
(2) speeder. In our case study, we have used the Bertsekas’s method [8] .
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4 Results Analysis

In this section we present some results. We have run several test scenarios. In all
our evaluations, we have considered that; s1 = s1 = s3 = 1, s2 = 2, s2 = s3 = 4,
R1 = 5, R2 = 3, R3 = 1, β1 = 0.001, β2 = 0.01 and β3 = 0.01.

In our five test scenarios, we have considered that ∀i ∈ {1, 2, 3}, ρi = ρ, where
ρ ∈ {1, . . . , 5}. For each ρ value we have computed the optimal CAC policy
π∗. Note that, we have not fixed C. In fact, for each test scenario, C is chosen
as the smallest integer value for which an optimal CAC policy exists (i.e. the
call blocking probabilities are satisfied). In other words, we provide here the
answer to the question on how to dimension the WiMAX cell capacity (C), so
that the QoS of the carried services are statistically satisfied. Results of our
experimentations are summarized in table bellow:

ρ C e (π∗) R (π∗) P1 (π∗) P2 (π∗) P3 (π∗) E [s2] E [s3]
1 13 0.6094 8.970 0.000666 0.007572 0.003884 3.887 3.456
2 19 0.7773 17.917 0.000400 0.009904 0.009500 3.839 3.113
3 25 0.8488 26.908 0.000616 0.007985 0.003634 3.798 2.848
4 31 0.8844 35.904 0.000411 0.006413 0.002677 3.767 2.629
5 36 0.9079 44.865 0.000359 0.006382 0.006112 3.701 2.357

The table shows that the link efficiency, denoted e (π∗), and the average rev-
enue rate, R (π∗), of the optimal CAC policy π∗, increase with the load ρ. We
also clearly see that, ∀i ∈ {1, 2, 3}, Pi (π∗) ≤ βi. The table shows the average
bandwidth allocated to each rtPS or nrtPS call1, denoted E [s2] and E [s3] re-
spectively. Obviously, ∀i ∈ {2, 3}, si ≤ E [si] ≤ si. One could also observe that
as ρ increases, the degradation of E [s3] is more important than E [s2]. This is a
direct consequence of our Priority-based bandwidth sharing scheme. Note that,
assuming our bandwidth sharing scheme, we have also evaluated the Complete
Sharing (CS) as a basic CAC policy. This simple policy is known for not being
able to satisfy calls blocking probability constraint. Using the same test scenar-
ios’ parameters described in this section, and assuming the values of C given in
the result table we were able to see that, under a CS policy, UGS calls blocking
probability is always higher than β1.

5 Conclusion

This work presents two contributions. First, we formalize the optimal CAC policy
problem for a tripe play WiMAX services access. Second, in order to determine
the nearly optimal CAC policy we propose an alternative algorithm from the
classical Linear Programming approach. The basic idea is to use the Lagrange
multiplier method in order to overcome the numerical problems faced by the
L.P. algorithm. The main advantage of our algorithm is its iterative nature.
1 Recall that for UGS; s1 = s1 = s1.
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Although, our method is more robust than the L.P. approach to states space
dimension problem, numerical problems could not totally being avoided for large
state spaces. Precisely, when considering realistic WiMAX deployment scenario.
Our ongoing works focus on designing simple WiMAX CAC policies. We do
not necessarily seek for optimal CAC. We rather look for simple CAC policies,
whose mathematical modelling will lead to a tractable analytical resolution, more
suitable for realistic WiMAX dimensioning studies. The CAC policy presented
in this paper will serve as the optimal reference for our new policies.
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Abstract. Attaining stability guarantees using distributed scheduling
policies is an important design goal in multi-hop wireless networks. Sev-
eral recent results have recently characterized tradeoffs tradeoffs between
computation times and stability guarantees in multi-hop wireless net-
works. We summarize existing results that have substantially advanced
the state of the art in this context, and discuss problems that remain
open.

1 Introduction

Attaining the maximum stability region, or a guaranteed fraction thereof,
through dynamic link scheduling, is a key design goal in multihop wireless net-
works. The scheduling problem involves determination of which links transmit
packets at any given time. Appropriate scheduling of links is key towards attain-
ing stability guarantees as the success of transmission in any given link depends
on which other links transmit packets simultaneously. The transmission sched-
ules can not be pre-computed, and needs to be determined at every transmission
epoch, as the congestion levels in the nodes and the transmission conditions in
the wireless medium vary with time, and the statistics of these temporal vari-
ations are oftentimes not known a-priori. Thus, the time required to determine
which links would transmit at any transmission epoch is a key performance
metric for any dynamic scheduling policy.

Owing to the lack of a central controller, at every transmission epoch each link
needs to determine whether it would transmit based on its own state and the
information it acquires about the states of other nodes. The stability guarantees
usually improve with increase in the information each link (or rather a node
which is the source of the link) acquires about the states of other links. The time
required for each link to decide whether to transmit at any given time depends on
the time required (a) to exchange messages with other links to learn their states
and (b) to perform the computations required to arrive at an appropriate decision
based on the information acquired. We refer to the total time required in both
parts as the schedule computation time, or rather the computation time. The
time required in each part increases with increase in the amount of information
� Currently visiting INRIA, Sophia, Antipolis.
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a link acquires about the states of other links. Thus, an important question is
how much information a link should acquire about the states of other links.

The scheduling policies that have been widely investigated can be classified
in two broad classes based on the above qualifier: the policies that require each
link to know some attribute that depends on the states of (a) all links in the
network [3,9,10] and (b) only the links that interfere with it [1,5,6,8,11]. We
refer to the two classes as Information(N) and Information(1) policies re-
spectively, where N is the number of links in the network. By this nomenclature,
Information(k) is the class of policies that require each link to learn the states
of their k-hop interferers.

The contribution of this paper is to survey the recent results that characterize
the tradeoffs between stability guarantees, computation times and the amount of
state information required for scheduling policies for different classes of wireless
networks. We subsequently summarize several open problems that are theoret-
ically intriguing and also important from a practical perspective. The article is
organized as follows. We describe the existing work in Section 2, and describe
the open problems in Section 3.

2 Existing Work

A seminal result in this context has been obtained by Tassiulas et al. who
have characterized the maximum stability region and provided a policy that
attains this stability region in an arbitrary wireless network [10]. This policy
schedules the maximum weighted independent set of links in each slot, and hence
requires Ω(eN ) computation time unless P = NP. Later, Tassiulas [9] provided
randomized scheduling schemes that attain the maximum achievable stability
region, which can be implemented in fully distributed manner using gossip based
algorithms [4]. In each slot, this policy randomly selects an independent set of
links, compares its weight with the weight of the set of links scheduled in the
previous slot and schedules the set that has the larger weight. This policy requires
Θ(N) computation time. Recently, Dimakis et al. [3] have shown that a greedy
maximal weight scheduling, which requires Θ(N) computation time, attains the
maximum stability region in several different networks. All these policies are in
the Information(N) class.

Recently, provable stability guarantees have been obtained with some policies
in Information(1) class. Dai et al. [2], Lin et al [6] and Wu et al. [11] proved
that a simple greedy scheduling scheme, maximal matching, attains half the max-
imum stability region for the primary interference model; the computation time
for maximal matching is Θ(ΔGlogN), where ΔG is the maximum degree and N
is the number of nodes in the network. Chaporkar et al. [1] proved that maxi-
mal matching can be generalized to attain guaranteed fraction of the maximum
stability region for arbitrary interference models, while retaining the logarithmic
computation time. Sarkar et al. [8] proved that for primary interference model
and tree graphs, a queue length dependent maximal matching attains 2/3 of the
stability region while using Θ

(
ΔG(log(N))2

)
computation time. Lin et al. [5]
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proved that a random access scheme, where links access the medium with a prob-
ability that depends on their and their interferers’ queue lengths, attains 1/3 and
1/ΔG the stability region for arbitrary networks under primary and secondary
interference models respectively, while requiring a O(ΔG) computation time.

Sarkar et al. [7] introduced the class of Information(k) policies and proved
that for appropriate choices of k, policies can be designed in the Information(k)
class so as to obtain arbitrary tradeoffs between the best stability guarantees
and the computation times. They first consider the primary interference model
which mandates that any set of links can be simultaneously scheduled provided
they do not have any common node. Under this interference model, when the
network topology is a tree, given any positive constant ε, they obtained a dis-
tributed scheduling policy in Information(1) class that (a) approximates the
stability region within a factor of 1 − ε and (b) requires a computation time of
O(ΔG/ε). The policy is simple to implement as the computation of each sched-
ule needs each link to communicate only 1 bit of control message to each of the
links that interferes with it. Next, they present a general framework for design-
ing Information(k) policies for approximating the stability region arbitrarily
closely for arbitrary networks and interference models. They subsequently use
this framework for obtaining arbitrary tradeoffs between stability guarantees
and computation times for large classes of networks, e.g., graphs with limited
cyclicity and primary interference models, geometric and quasi-geometric graphs
under both primary and secondary interference models. For example, when nodes
are embedded in a plane and there exists an edge between two nodes if and only
if the distance between them is less than a given constant D (i.e., for geometric
graphs), given any positive constant ε, they obtain a distributed scheduling pol-
icy in Information

(
O(ΔG/ε2)

)
class that (a) approximates the stability region

within a factor of 1 − ε and (b) requires a computation time of O(Δ2
G/ε2). The

stability and computation time guarantees extend to networks where sessions
traverse multiple links.

We now briefly describe the design of the above policies, and provide the in-
tuition behind the performance guarantees. The proposed policies partition the
network in a collection of components - the size of the components depend only
on ΔG and ε. The links that originate in a component but interfere with those in
another component are “shut down” i.e., not scheduled. Thus, the links scheduled
in each component will not interfere with those scheduled in other components
irrespective of the scheduling policy in each component. Hence, the scheduling in
different components can now be determined in parallel. Thus, the time required
to compute the overall schedule now depends only on the size of each component
and can be determined only by ΔG and ε for appropriate partitioning schemes.
The links are scheduled in each component so as to maximize the stability region
of the component. Thus, the reduction in the overall stability region may only
happen because links are occasionally shut down. But, the resulting reduction
in stability is small because each link is shut down only a small fraction of time
since different partitioning schemes are used at different times and the size of
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the components in each partition is large enough. The proofs for the stability
guarantees rely on a combination of graph-partitioning techniques and lyapunov
arguments.

3 Open Problems

The existing results focus on obtain arbitrary guarantees between computation
times and stability guarantees. An intriguing question is to obtain guarantees
for end-to-end delays. A basic question, which remains open, is the characteriza-
tion of a policy that attains any feasible delay vector in an arbitrary constrained
queueing network. The characterization is likely to be significantly more chal-
lenging than characterization of the maximum stability guarantees simply be-
cause the class of policies that minimize end-to-end delays is more limited than
the class of policies that maximize the stability region. Furthermore, the delay-
optimal policies are likely to have exponential computation times. Hence, the
next natural question, will be to obtain arbitrary tradeoffs between computa-
tion times and delay guarantees. It is worthwhile to investigate whether the
techniques that lead to tradeoffs between computation times and throughput
guarantees lead to similar tradeoffs for delay guarantees as well.

Next, the existing results assume that the transmitters do not control power
levels. When this assumption is relaxed, the nodes need to jointly optimize power
levels and transmission policies such that the stability region is maximized sub-
ject to limitations on available power. The problem of obtaining arbitrary trade-
offs between computation times and stability guarantees remains open in this
context.
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Abstract. A control model over a finite horizon is considered, where
the state process is not observable and has to be estimated with an ob-
servation process, where each state of the observation process represents
a group of states of the unobservable process. We show how the model
with partial information can be transformed in one with complete infor-
mation with the help of the filter technique and conditional probabilities.
As a main result we prove the connection between the original and the
reduced model and we show an explicite representation of the conditional
probability.

Keywords: Markovian jump process, partial information, conditional
probability, stochastic control theory.

1 Introduction

Queueing systems, call centers or telecommunication networks are modeled most-
ly as a continuous time and discrete state space Markov chain. What they have
also in common, that the state process is very often not observable in a di-
rect way. We may think for a admission-control-model, where the gatekeeper
is only informed if an accepted customer finds an idle server or not, but he is
not informed, when service is completed (see [7]). In [1] an inventory model is
considered, where the only information about the inventory level is, whether the
level is empty or not. As a third example one consider the modeling of a con-
gested path system in the framework of TCP-internet-system done in [4]. In all
of this examples there exists an observation process, which is correlated to the
unobserved state process and which gives some information about the current
state or changes in the system.

In this paper such a system with incomplete information is considered in
a more general framework. Our underlying state process is a Markovian jump
process, which is estimated again by a Markovian jump process. Each state of the
observation process is a representative of an unobserved state and so jumps in the
unobserved process may lead to changes in the observation state. Based on this
state process a control problem over a fixed finite horizon is considered, which
is not solvable in a direct way, since of the incomplete information structure.
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We show how this problem can be transformed into a model with complete
information with the help of conditional probabilities and show the relation
between the original and the reduced model. Also an explicite formula for the
conditional probability is given.

The paper is organized as follows: in section 2 we introduce our state process
and the corresponding control problem over a finite horizon T. The reduction
and the transformation into a problem with complete information structure is
pointed out in section 3.

2 The Model

On a measurable space (Ω,F) consider a process (Xt) taking values in a finite
set, which is identified for mathematical reason by SX := {e1, . . . , en}, n ∈ IN,
where ei ist the i-th unit vector of IRn. Xt = (X1

t , . . . , Xn
t ) is a pure jump process

and can be characterized by the number of jumps into and out of state ei, i.e.

X i
t =

n∑

j=1

NX
t (j, i)−

n∑

j=1

NX
t (i, j) ,

where NX
t (i, j) counts the jumps of Xt from state ei to ej with i �= j (see [5]).

Such a jump occurs with intensity qX
ij (u)X i

t−, where u is the control parameter,
specified later on. For completeness we set NX

t (i, i) = 0.
The process Xt is not observable in a complete way, whereas an observation

process exists, which gives us some information about the unobserved current
state of Xt.

Definition 1. Let m ∈ IN. We call (I(k), k = 1, . . . , m) an information
structure, if

(i) ∅ �= I(k) ⊂ {1, . . . , n} for all k and
(ii) I(k) ∩ I(l) = ∅ for all k �= l .

The set I(k) is identified with fk and fk is called a representative of ei, if i ∈
I(k), where fk is the k-th unit vector of IRm. By the definiton of the information
structure, each ei has at most one representative, and m ≤ n is finite.

Example 1

1. one-to-one-representation: m = n and I(k) = {k} for all k = 1, . . . , m.
2. group-representation: m < n and there exists at least one k with |I(k)| ≥ 2.
3. no-information: m = 1, I(1) = {1, . . . , n}.

The observation process is modeled as a pure jump process on the same mea-
surable space (Ω,F) and is denoted by Yt. Yt, taking values in the finite set
SY := {f1, . . . , fm}, is characterized by the processes NY

t (k, l) (k �= l), where
NY

t (k, l) counts the jumps of Yt from fk to fl, i.e.

Y k
t =

m∑

l=1

NY
t (l, k)−

m∑

l=1

NY
t (k, l) (1)
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and NY
t (k, l) is defined for k �= l by

NY
t (k, l) =

∑

i∈I(k)

∑

j∈I(l)

NX
t (i, j)Y k

t− . (2)

So the intensity of NY
t (k, l) is given by

qY
kl(u, Xt−)Y k

t− :=
( ∑

i∈I(k)

∑

j∈I(l)

qX
ij (u)X i

t−
)
Y k

t− .

For completeness define NY
t (k, k) = 0.

Denote by (FX,Y
t ) the filtration generated by (Xt, Yt) and (FY

t ) the filtration
generated by (Yt) and assume that both filtrations satisfy the usual conditions.
By the construction of Yt of course it is true, that FX,Y

t = FX
t .

Let U ⊂ IR be a compact set, such that ∀u ∈ U holds: qX
ij (u) ≥ 0 ∀i �= j. We

assume that the control process (ut) satisfies the following assumption:

(A)

⎧
⎪⎨

⎪⎩

(ut) is a càdlàg process
ut is FY

t -predictable for all t

ut ∈ U for all t .

So we can give as a summary the following martingale representation of our
process (Xt, Yt) :

dXt = QX(ut)Xtdt + dMX
t (3)

dYt = QY (ut, Xt)Ytdt + dMY
t , (4)

where

– (QX(u))� = (qX
ij (u)) with qX

ii (u) := −∑
j �=i

qX
ij (u) is the intensity matrix of

Xt

– (QY (u, x))� = (qY
kl(u, x)) with qY

kk(u, x) := −∑
l �=k

qY
kl(u, x) is the intensity

matrix of Yt

– MX
t and MY

t are n- and m-dimensional martingales with expectation 0
defined by

MX
t (i) =

n∑

j=1

(
NX

t (j, i)−NX
t (i, j)−

∫ t

0

qX
ji (us)Xj

sds
)

MY
t (k) =

m∑

l=1

(
NY

t (l, k)−NY
t (k, l)−

∫ t

0

qY
lk(us, Xs)Y l

s ds
)

.

By the construction of Xt and Yt we have immediately, that Yt jumps only if
Xt jumps (see (2)). We also get the quadratic variation of this both processes
as:

[X·, Y·]t = [MX
· , MY

· ]t =
∑

0<s≤t

m∑

k=1

m∑

l=1

∑

i∈I(k)

∑

j∈I(l)

(ej − ei)(fl − fk)�X i
s−Y k

s− .
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Note that Xt, Yt, M
X
t , MY

t depend also on the control u, so formally we have
to write Xu

t , etc. For simplicity we drop this dependency in the notation.
Let T > 0 be a finite time horizon. Since only Yt is observable, control at

time t is allowed to depend on the observed past FY
t only, i.e. we call a control

u = (us) admissible in [t, T ] if

u ∈ U [t, T ] := {u = (us) | (us)s∈[t,T ] satisfies (A)} .

The set U [t, T ] is called the set of admissible controls for the time interval [t, T ].

Lemma 1. There exists a probability measure Pu such that on (Ω,FX,Y
T ,Pu)

there exists a process satisfying the dynamic equations (3) and (4).

Proof. This proof is an immediate consequence of Kolmogorov’s Theorem. 
�
Xt is called Markovian jump process with generator (QX(u))�. Note, that if
the controls are Markovian, (Xt) is a continuous time Markov chain and (3)
is just the martingale representation. In general this is not the case, but the
intensity qX

ij (u) for a jump from ei to ej depends only on the current control and
the current state, so the notion Markovian is justifed. A similiar interpretation
holds for Yt.

After defining our state process and the set of admissible controls, we finally
introduce our control model over the fixed finite horizon T :

(P )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Eu

[ ∫ T

0
g(s, Xs, Ys, us)ds + h(XT , YT )

]
→ min

dXt = QX(ut)Xtdt + dMX
t

dYt = QY (ut, Xt)Ytdt + dMY
t

(X0, Y0) = (x0, y0)
u ∈ U [0, T ]

where the expectation Eu is taken with respect to Pu.
The initial state can also be stochastic with some given initial distribution.

For simplicity however we choose the initial state deterministic.
The optimal value of (P ) is denoted by

v(P ) := inf
u∈U [0,T ]

Eu

[ ∫ T

0

g(s, Xs, Ys, us)ds + h(XT , YT )
]

and an admissible control u∗ is called optimal if the induced cost are equal v(P )
(note once more, that (Xt, Yt) also depends on the control).

Problem (P ) can not be solved in a direct way, since the process (Xt) is not
observable and has to be estimated with the help of the observation process (Yt),
which gives us indeed some information, since each state of Yt stands for a group
of states of Xt. Note, that we have in general less information, since

FY
t ⊂ FX,Y

t .
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3 The Reduction

We show now, how the model with partial information can be transformed in a
model with complete information, which is then solvable in a direct way. This
reduction will be done with the help of the well-known filter-technique. We prove
how a stochastic differential equation for the conditional probabilities

X̂ i
t := Pu(Xt = ei | FY

t )

can be derived in an explicite way. Based on this result we transform problem
(P ) into a problem (Pred), which depends only on FY

t -measurable processes. We
show also some equivalence structure between the two problems.

Because of (1) and NY
t (k, l) =

∫ t

0 Y k
s−dY l

s it holds:

FY
t = σ

(
NY

s (k, l), for k �= l, s ≤ t
)

.

So the filter technique can be applied to each NY
t (k, l) instead of Yt and the

conditional probability X̂t can be expressed in terms of the Poisson-processes
NY

t (k, l).
It is well known by [6], that the predictable FY

t -intensity of NY
t (k, l) is given

by

Eu[qY
kl(ut, Xt−)Y k

t− | FY
t−] =

( ∑

i∈I(k)

∑

j∈I(l)

qX
ij (ut)X̂ i

t−
)
Y k

t− =: q̂Y
kl(ut, X̂t−)Y k

t− .

With (4) in mind we get the FY
t -representation of Yt as follows:

dYt = Q̂Y (ut, X̂t)Ytdt + dM̂Y
t , (5)

where M̂Y
t is a FY

t -martingale with expectation 0, which consists of the compen-
sated FY

t -Poisson-process NY
t (k, l) having FY

t -intensity q̂Y
kl(ut, X̂t−)Y k

t− (similar
to section 2).

The following theorem offers an explicite (unique) representation of the con-
ditional probability X̂ i

t . This formula is an extension of the results given in [2],
[6] and for the unnormalized case considered in [3].

Theorem 1. It holds:

dX̂t = QX(ut)X̂tdt+
m∑

k=1

m∑

l=1

Ψ(k,l)(ut, X̂t−)
(
dNY

t (k, l)− q̂Y
kl(ut, X̂t)Y k

t dt
)

, (6)

with Ψ(ν,ν)(u, x) = 0 for ν ∈ {1, . . . , m} and for k �= l

Ψ(k,l)(u, x) =
1

q̂Y
kl(u, x)

⎛

⎜⎜⎜⎜⎝

∑
i∈I(k)

∑
1∈I(l)

qX
i1 (u)xi

...∑
i∈I(k)

∑
n∈I(l)

qX
in(u)xi

⎞

⎟⎟⎟⎟⎠
− x .
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Proof. From (3) follows dX̂t = QX(ut)X̂tdt + dM̂t, where M̂t = Eu[MX
t | FY

t ].
Since M̂t is an FY

t -martingale, it admits the representation (see e.g. [2]): M̂t =∫ t

0
φsdM̂Y

s , where φt is a square integrable, predictable process. As mentioned
above M̂Y

t can be written as sums of the compensated FY
t -Poisson-process

NY
t (k, l), so we get:

dX̂t = QX(ut)X̂tdt +
m∑

k=1

m∑

l=1

φ(k,l)(t)(dNY
t (k, l)− q̂Y

kl(ut, X̂t)Y k
t dt) .

Using Itô’s formula for calculating XtN
Y
t (k, l) and X̂tN

Y
t (k, l) and using a Fubini

argument by [8] we get the assertion by comparing the expectation of these two
expressions. 
�
Equation (6) offers an explicite representation of the conditional probability X̂t,
but the equation is nonlinear in x which makes things very difficult for a closed
formula of X̂t. Since between two jumps of Yt, X̂t follows the deterministic
differential equation

ẋ = f(u, x, y) ,

with f(u, x, y) :=QX(u)x−
m∑

k=1

m∑
l=1

Ψ(k,l)(u, x)q̂Y
kl(u, x)yk and if a jump of NY

t (k, l)

occurs, the new state of X̂t is X̂t = X̂t− + Ψ(k,l)(ut, X̂t−) with probability one,
X̂t is a piecewise-deterministic jump process.

If Yt jumps from fk into fl (with k �= l under the assumption m ≥ 2) we have
X̂ i

t− = 0 for all i ∈ I(l) and X̂ i
t ≥ 0 (where at least one is > 0) for all i ∈ I(l)

and X̂ i
t = 0 for all i /∈ I(l). So each jump of Yt leads to changes in X̂t. So we

have Ψ(k,l)(u, x) �= 0 for k �= l and therefore a one-to-one relation between Yt

and X̂t. Summarizing we have

FY
t = F X̂

t . (7)

Equation (6) can be extended to the case of noised observation, where the noise
is modeled as external induced jumps of Yt, i.e. the counting process NY

t (k, l) is
of the following form:

NY
t (k, l) =

∑

i∈I(k)

∑

j∈I(l)

NX
t (i, j)Y k

t + NE
t (k, l) ,

where NE
t (k, l) is a Poisson-process, counting some external events.

Example 2

1. one-to-one-representation: then NY
t (k, l) = NX

t (k, l)Y k
t and so if Yt = Xt

then X̂s = Ys = Xs for all s ≥ t (i.e. Y0 = X0 then X̂t ≡ Yt ≡ Xt). For
completeness: Ψ(k,l)(u, x) = fl − x.
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2. two-group-representation: wlog we assume I(1) = {1, . . . , v} and I(2) =
{v + 1, . . . , n}. Then

Ψ i
(1,2)(u, x) + x =

⎧
⎨

⎩

0 i = 1, . . . , v

1
q̂Y
12(u,x)

v∑
j=1

qX
ji (u)xj i = v + 1, . . . , n

where q̂Y
12(u, x) =

v∑
j=1

n∑
i=v+1

qX
ji (u)xi. Since after a jump of Yt from fk to

fl, the new state of X̂t is X̂t− + Ψ(k,l)(ut, X̂t−) we see here: the probability
to be then in a state, which is represented by I(1) is equal to 0 and the
probability for the states of representation group I(2) is proportional to the
jump intensities weighted with the current conditional state probability X̂t−.
A analogous result holds of course for Ψ(2,1)(u, x).

3. no-information: m = 1 and I(1) = {1, . . . , n} : then Ψ(k,l)(u, x) ≡ 0 and
X̂t follows the deterministic differential equation ẋ = QX(u)x, which is
Kolmogorov’s backward differential equation.

With equation (5) and theorem 1 in mind we can transform our problem (P )
with the help of Fubini into the following reduced model.

(Pred)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eu

[ ∫ T

0 ḡ(s, X̂s, Ys, us)ds + h̄(X̂T , YT )
]
→ min

dX̂t = QX(ut)X̂tdt

+
m∑

k=1

m∑
l=1

Ψ(k,l)(ut, X̂t−)
(
dNY

t (k, l)− q̂Y
kl(ut, X̂t)Y k

t dt
)

dYt = QY (ut, X̂t)Ytdt + dM̂Y
t

(X̂0, Y0) = (x0, y0)
u ∈ U [0, T ]

where

ḡ(s, x, y, u) :=
n∑

i=1

g(s, ei, y, us)xi

h̄(x, y) :=
n∑

i=1

h(ei, y)xi .

Note, that the goal function is linear in the state variable X̂t, but this is not the
case for the stochastic differential equation of X̂t, as mentioned earlier.

Problem (Pred) is now a problem with complete information structure and
with state space �n × SY , where �n is the n-dimensional probability simplex.
So it is solvable in a direct way. It is equivalent in the sense of the following
reduction theorem:
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Theorem 2 (Reduction). It holds for all t ∈ [0, T ] :

a) Eu

[ ∫ T

t
g(s, Xs, Ys, us)ds + h(XT , YT ) | FY

t

]

= Eu

[ ∫ T

t
ḡ(s, X̂s, Ys, us)ds + h̄(X̂T , YT ) | FY

t

]

b) sup
u∈U [t,T ]

Eu

[ ∫ T

t
g(s, Xs, Ys, us)ds + h(XT , YT ) | FY

t

]

= sup
u∈U [t,T ]

Eu

[ ∫ T

t
ḡ(s, X̂s, Ys, us)ds + h̄(X̂T , YT ) | FY

t

]
.

Proof. Part a) follows with the theorem of Fubini. Part b) is a direct consequence
of part a). 
�
Corollary 1. The following assertions are immediate consequences of theorem 2:

a) u = (ut) is optimal for (Pred) ⇐⇒ u = (ut) is optimal for (P )
b) The optimal values of (Pred) and (P ) are the same.

Theorem 2 simplifies with (7) in mind in the case of an (optimal) Markovian
control to the following:

Theorem 3. If the (optimal) control (u∗
t ) is Markovian and (X̂∗

t , Y ∗
t ) is the

corresponding state process, then: Eu∗
[ ∫ T

t
ḡ(s, X̂∗

s , Y ∗
s , u∗

s)+h̄(X̂∗
T , Y ∗

T ) | FY ∗
t

]
=

Eu∗
[ ∫ T

t ḡ(s, X̂∗
s , Y ∗

s , u∗
s) + h̄(X̂∗

T , Y ∗
T ) | X̂∗

t , Y ∗
t

]
.

One way for solving (Pred) is with the help of the Hamilton-Jacobi-Bellman-
equation and the verification technique, described in the next theorem.

Theorem 4 (Verification). Let C1,1p the set of functions, who are C1 in the
first and piecewise C1 in the second variable. Let Ṽ : [0, T ]×�n×SY → IR and
let Ṽ (t, x, y) ∈ C1,1p be a solution of the following HJB-equation:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vt(t, x, y) + inf
u∈U

{
ḡ(t, x, y, u) + Vx(t, x, y)f(u, x, y)

+
m∑

k=1

m∑
l=1

(
V (t, x + Ψ(k,l)(u, x), fl)− V (t, x, fk)

)
q̂Y
kl(u, x)yk

}
= 0

V (T, x, y) = h̄(x, y) .

If there exists û(t, x, y) ∈ U such that ∀(t, x, y) ∈ [0, T ] × �n × SY the inf is
attained for u0 := û(t, x, y), then

a)
(
u∗

t := û(t, X̂∗
t , Y ∗

t )
)
t∈[0,T ]

is an optimal control, where (X̂∗
t , Y ∗

t ) is the to
(u∗

t ) corresponding state process
b) Ṽ (t, x, y) = Eu

[ ∫ T

t
ḡ(s, X̂∗

s , Y ∗
s , u∗

s) + h̄(X̂∗
T , Y ∗

T ) | X̂∗
t = x, Y ∗

t = y
]

and i.e.

v(Pred) = Ṽ (0, x0, y0).

Proof. Apply the formula of Itô on Ṽ (t, x, y) and calculate the expectation the
assertion in a) is proven. Part b) follows from a), with theorem 3 in mind, since
(u∗

t ) is Markovian. 
�
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4 Conclusions

In this paper we considered a general framework for a control model, where
only groups of the unobserved state process are observable. We pointed out
one possible reduction technique for solving the incomplete information model
with the help of the filter technique and we showed the equivalence between the
original and the reduced model. The here given construction and formula for
the conditional probabilities are very general and can also be applied in many
applications, like queueing models.

Acknowledgments. The author thanks an anonymous reviewer for valuable
comments.
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Abstract. Admission control in queueing networks is often based on
partial information on the network state. This paper studies how the
lack of state information affects performance by considering a simple
model for admission control. The model is analyzed by studying a related
censored process that has a matrix-geometric steady-state distribution.
Numerical results show how partial information may cause some per-
formance characteristics in queueing networks to be nonmonotone with
respect to service rates.

1 Introduction

Admisson control can be used to avoid congestion in heavily loaded queueing
networks. In many queueing networks of practical interest, the admission con-
troller may not be able to fully monitor the state of all queues in the network.
This might happen for example in models of Internet-based services that rely on
the infrastructure of several network operators. As a consequence, the admission
decisions must be based on partial information on the network state. The goal of
this paper is to study how the lack of state information affects the performance
in this type of queueing models.

To deal with the question mathematically, we will restrict our attention to
simple two-station tandem queues with unlimited buffers. Probably the simplest
admission control mechanism based on partial information is the one where the
admission decisions are based on the number of customers at the first server
only, so that arriving customers are rejected whenever the length of the first
queue exceeds a certain threshold. The steady-state decay rate of the number
of customers in the second queue in this model was recently studied by Kroese,
Scheinhardt, and Taylor [6]. Another well-studied class of tandem queues where
the control is based on partial state information are the models where the first
server stops processing when the second queue becomes too long [3,4,5,7].

In this paper we look at a different type of system where the control is based on
the state of the second queue, but in such a way that only the admissions to the
network, not the operation of the first server, can be controlled. More precisely,

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 129–137, 2007.
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we consider a two-station tandem queueing network, where the interarrival times
at station 1 and the service times in stations 1 and 2 are independent and
exponentially distributed with parameters λ, μ1, and μ2, respectively. We denote
the number of customers in station i by Xi, and assume that the admission
controller accepts new customers to the system if and only if X2 ≤ K, see
Figure 1. The stability of this system was recently studied by Leskelä [8], who
showed that the queue length process X = (X1, X2) is positive recurrent if and
only if the triple (λ, μ1, μ2) satisfies the relation

λ
(
1− (μ1/μ2)K+1

)
< μ1. (1)

Here, we will focus on determining the steady-state distribution of X . Observe
that, in contrast with the other aforementioned control models, in this system
both queues can grow arbitrarily big.

1(X2 ≤ K)

X1 X2

K

AC

Fig. 1. The admission control mechanism

The rest of the paper is organized as follows. In Section 2, the problem of
finding the steady-state distribution of the system is reduced using censoring
to a simpler problem with a matrix-geometric structure. Section 3 presents an
efficient numerical approach for performance evaluation of the model, with exam-
ples that illustrate how partial information affects the system. Finally, Section 4
concludes the paper.

2 Queue Length Analysis

We will assume from now on that (1) holds, so that the continuous-time Markov
process X = (X1, X2) is positive recurrent. In the sequel we will first study
a modification of X restricted to periods of time during which X2 ≤ K. This
censored process has a generator with a special block structure of the so-called
G/M/1 type [9], which will be exploited to evaluate its steady-state distribution.
Afterwards, we will find the steady-state probabilities of the process X itself.

2.1 Censoring

The behavior of the process X = (X1, X2) during periods of time when X2 ≤ K
can be studied by censoring the parts of the sample path where X does not belong
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to the set S− = {(n, k) ∈ Z
2
+ : k ≤ K}. The censored process Y = (Y1, Y2) is

defined by
Yi(t) = Xi(γ(t)), t ≥ 0,

where
γ(t) = inf{τ ≥ 0 :

∫ τ

0

1{X2(s)≤K} ds > t}.

It follows from the strong Markov property [10, Section III.21] that Y is a Markov
process on S−.

To conveniently describe the infinitesimal generator of Y , we will employ the
following notation for (K + 1)-dimensional square matrices. Denote by I the
identity matrix, while TL and TR will stand for the left and right shift matrices
given by (TL)i,j = δi−1,j and (TR)i,j = δi+1,j for 0 ≤ i, j ≤ K where δi,j denotes
the Kronecker delta. Further, denote the projection matrices onto 0-th and K-
th coordinate by U0 and UK , that is, (U0)i,j = δi,0δj,0 and (UK)i,j = δi,Kδj,K .
Ordering the states in S− lexicographically, the generator of Y can be written
in the form

Q =

⎛

⎜⎜⎜⎜⎜⎝

B0 A0 0 0 · · ·
B1 A1 A0 0 · · ·
B2 A2 A1 A0 · · ·
B3 A3 A2 A1 · · ·
...

...
...

...

⎞

⎟⎟⎟⎟⎟⎠
,

where the matrices An and Bn are given by

A0 = λI,

A1 = μ2TL − (λ + μ1 + μ2)I + μ2U0,

A2 = μ1(TR + q1UK),
An+1 = μ1qnUK , n ≥ 2,

and

B0 = μ2TL − (λ + μ2)I + μ2U0,

B1 = μ1(TR + UK),
Bn+1 = μ1(1− q1 − · · · − qn)UK , n ≥ 1.

The numbers qn represent the probabilities that, if the process X leaves the set
S− in some state (m+n, K), it enters S− again in state (m, K), where m ≥ 1. It
is not hard to check that qn is equal to the probability that a random walk on the
integers starting at state 0 and with probabilities μ1/(μ1 +μ2) and μ2/(μ1 +μ2)
of going to the right and left, respectively, reaches state -1 for the first time in
exactly 2n− 1 steps. It is well-known [2] that this quantity equals

qn = Cn−1

(
μ1

μ1 + μ2

)n−1(
μ2

μ1 + μ2

)n

,

where Cn = 1
n+1

(
2n
n

)
are the Catalan numbers.
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For k = 0, . . . , K, denote by ek the k-th basis vector of the (K+1)-dimensional
euclidean space, and let e =

∑K
k=0 ek. By convention, all vectors are treated as

row vectors. One can check that Neuts’ mean drift condition [9, Formula (1.7.11)]
for the stability of Y is equivalent to (1). Furthermore, the steady-state proba-
bilities of the censored process are given [9] in the matrix-geometric form

P(Y = (n, k)) = x0R
neT

k , (n, k) ∈ S−, (2)

where the matrix R is the unique minimal non-negative solution of

∞∑

n=0

RnAn = 0, (3)

and x0 is the unique positive row vector satisfying

x0

∞∑

n=0

RnBn = 0, and x0(I −R)−1eT = 1. (4)

2.2 Steady-State Queue Lengths

Once the steady-state distribution of the censored process Y is found, we will
next show how this distribution can be used to obtain the steady-state proba-
bilities for the queue length process X . First, note that

P(X = (n, k)) = P(X2 ≤ K) P(Y = (n, k)), (n, k) ∈ S−. (5)

Second, because the steady-state rate at which customers are accepted into the
system must be equal to the rate of customers coming out of the system, it
follows that

λ P(X2 ≤ K) = μ2(1− P(X2 = 0)). (6)

Note that (5) implies P(X2 = 0) = P(X2 ≤ K) P(Y2 = 0). Substituting this
into (6) we get

P(X2 ≤ K) =
μ2

λ + μ2 P(Y2 = 0)
. (7)

Thus, (5) and (7) yield the steady-state probabilities of X for all states (n, k) ∈
S−, and what remains is to find the corresponding quantities on S+ = Z

2
+ \S−.

For the states in S+, we will first find out the probabilities P(X = (n, K +k))
for n, k > 0 by inspecting the excursions X makes in S+. Note that if X visits the
state (n, K + k), the time it spends there has mean 1/(μ1 + μ2). Furthermore,
note that the steady-state rate of transitions from (n + m, K) to S+ equals
μ1 P(X = (n + m, K)). Now we see by conditioning on the state in S− from
where X enters S+ that for all n, k > 0,

P(X = (n, K + k)) =
μ1

μ1 + μ2

∞∑

m=k

qk,m P(X = (n + m, K)), (8)



A Tandem Queueing Network with Feedback Admission Control 133

where qk,m is the probability that X will visit state (n, K+k) during an excursion
in S+ which was initiated from state (n + m, K). It is not hard to see that qk,m

does not depend on the values of n and K, and is equal to the probability
that a random walk on the integers starting from state 1 at time 0 and with
probabilities μ1/(μ1 + μ2) and μ2/(μ1 + μ2) of going to the right and to the left,
respectively, will visit state k at time 2m− k− 1 without visiting state 0 in any
time inbetween. Using the ballot theorem (see Takács [11]) one can verify that
this quantity equals

qk,m =
k

m

(
2m− k − 1

m− 1

)(
μ1

μ1 + μ2

)m−1(
μ2

μ1 + μ2

)m−k

. (9)

Finally, the probabilities P(X = (0, k)) with k > K can be found by observing
that the steady-state rate of transitions out of the set {(n, k′) : n = 0, k′ ≥ k}
equals the corresponding rate into that set, so that

μ2 P(X = (0, k)) = μ1

∞∑

m=k−1

P(X1 = 1, X2 = m), k > K. (10)

Alternatively, the probabilities on the left-hand side of equations (8) and (10)
can be recursively determined from the balance equations, starting from the ones
for X2 = K. In this way one avoids the infinite sums appearing on the right-hand
side of equations (8) and (10).

Remark 1. In the special case where K = 0, (3) degenerates into a scalar equa-
tion. In this case one can explicitly solve the balance equations to conclude that
the steady-state distribution of the system equals

P(X1 = n, X2 = k) =

⎧
⎪⎪⎨

⎪⎪⎩

λ

λ + μ2
(1−R)

(
1− μ1

λ
R
)k−1

, n = 0, k ≥ 1,

μ2

λ + μ2
(1 −R) Rn

(
1− μ1

λ
R
)k

, otherwise,

where
R =

λ

2μ1μ2

(√
(λ + μ1 − μ2)2 + 4μ1μ2 − (λ + μ1 − μ2)

)
.

This result has also been independently derived by Adan and Weiss [1], who
studied a two-machine 3-step re-entrant line with an infinite supply of work.

3 Performance Analysis

3.1 Throughput and Sojourn Time

We will analyse the steady-state performance of the system in terms of the
throughput θ, measured as the number of customers served per unit time, and
the mean sojourn time E(D) of accepted customers. To evaluate θ and E(D),
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one could use formulas (5) – (10) derived in Section 2.2. However, this approach
is computationally not very appealing, because it involves multiple infinite sum-
mations over the state space. As an alternative, the following theorem shows how
θ and E(D) can be calculated directly in terms of the steady-state distribution
of the censored process Y .

Theorem 1. Assume that (1) holds. Then the steady-state throughput θ and
mean sojourn time E(D) are given in terms of the steady-state distribution of
the censored process Y by

θ =
(

1
λ

P(Y2 = 0) +
1
μ2

)−1

, (11)

and
E(D) =

1
λ

E(Y11{Y2=0}) +
1
μ2

E(Y1 + Y2 + 1). (12)

Proof. Because θ = λ P(X2 ≤ K), the validity of (11) follows immediately
from (7). To prove the second claim, let us consider the level transitions for
the total amount of customers X1 +X2. Under stability, the rate of events where
the value of X1 + X2 changes from n to n + 1 is given by λ P(X1 + X2 =
n, X2 ≤ K), while the corresponding rate backwards from n + 1 to n equals
μ2 P(X1 + X2 = n + 1, X2 > 0). Thus,

λ P(X1 +X2 = n, X2 ≤ K) = μ2 P(X1 +X2 = n+1)−μ2 P(X1 = n+1, X2 = 0)
(13)

for all n ≥ 0. Multiplying both sides of (13) by n + 1 and then summing over n
we see that

λ E( (X1 + X2 + 1)1{X2≤K} ) = μ2 E(X1 + X2)− μ2 E(X11{X2=0}). (14)

Because E(D) = θ−1 E(X1 +X2) by Little’s law, the validity of (12) now follows
from solving (14) for E(X1 + X2) and using θ = λ P(X2 ≤ K).

3.2 Long-Term Behavior of the Unstable System

To better understand how the choice of parameters affects the performance of
the system, it is also interesting to see what happens in the unstable parameter
region. Recall from (1) that instability of the system implies μ1 < μ2, so that the
rate at which work is fed into the second server is strictly less than its service
capacity. Thus, intuition suggests that only the first queue will grow to infinity.
The next theorem verifies the validity of these heuristics.

Theorem 2. Assume λ(1−(μ1/μ2)K+1) > μ1. Then the process X started from
an arbitrary initial state satisfies as t→∞,

X1(t)→∞ almost surely,
X2(t)→ Z in distribution,

where Z is a geometrically distributed random variable with parameter μ1/μ2.
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Proof. Let Nλ, Nμ1 , Nμ2 be independent Poisson processes with rates λ, μ1 and
μ2, respectively. Then X can be represented as the unique solution of

X1(t) = X1(0) +
∫

(0,t]

1{X2(s)≤K} Nλ(ds)−
∫

(0,t]

1{X1(s)>0} Nμ1(ds),

X2(t) = X2(0) +
∫

(0,t]

1{X1(s)>0} Nμ1(ds) −
∫

(0,t]

1{X2(s)>0} Nμ2(ds). (15)

Let X̃2(t) be the solution of

X̃2(t) = X2(0) + Nμ1(t)−
∫

(0,t]

1{X̃2(s)>0} Nμ2(ds). (16)

Then a pathwise comparison of (15) and (16) shows that X̃2(t) ≥ X2(t) for all
t almost surely. This implies that X1(t) ≥ U(t) for all t a.s., where

U(t) = X1(0) +
∫

(0,t]

1{X̃2(s)≤K} Nλ(ds)−Nμ1(t).

Note that X̃2 equals the number of customers in a stable M/M/1 queue with
arrival rate μ1 and mean service time 1/μ2. Thus, X̃2(t) → Z in distribution,
where Z is geometric with parameter μ1/μ2. Since Nλ is independent of X̃2, it is
not hard to see that limt→∞ 1

t

∫
(0,t] 1{X̃2(s)≤K} Nλ(ds) = λ P(Z ≤ K) a.s. Now

using limt→∞ 1
t Nμ1(t) = μ1 a.s., we see that with probability one,

lim
t→∞U(t)/t = λ(1 − (μ1/μ2)K+1)− μ1.

Since the above limit is strictly positive, U(t)→∞ and thus X1(t)→∞ almost
surely.

To verify that X2(t) → Z in distribution, it is enough to show that X2 and
X̃2 will couple in finite time. Let T0 = sup{t : X1(t) = 0}. Since X1(t)→∞, T0

is a.s. finite. Define T1 = inf{t ≥ T0 : X̃2(t) = 0}. Since X̃2 represents the state
of a stable M/M/1 queue, T1 is finite a.s. Further, since X2 is dominated by X̃2,
we see that X2(T1) = X̃2(T1) = 0. Since the pathwise dynamics of X2 and X̃2

coincide for t ≥ T1, we conclude that X2(t) = X̃2(t) for all t ≥ T1.

3.3 Numerical Results

The steady-state distribution of the censored process Y = (Y1, Y2) can be nu-
merically calculated by first solving the matrix R from equation (3) using the
method of successive substitutions [9], and then solving the vector x0 from (4).
The steady-state throughput θ and mean sojourn time E(D) are then found by
combining the expressions of Theorem 1 with formula (2).

Figure 2 illustrates numerically computed contours of the throughput θ for
varying μ1 and μ2, where λ = 1 and K = 5. The thick curve in the middle
indicates the boundary of the stability region, so that the queue length process
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Fig. 3. Contours of E(D) as a function of μ1 and μ2 with λ = 1 and K = 5

X = (X1, X2) is not positive recurrent for values of μ1 and μ2 located to the
left of the thick curve. In the unstable region, the value of throughput does not
dependent on μ2, and is in fact equal to μ1. This reflects the fact that X1(t)→∞
almost surely when the system is unstable (Theorem 2), so in the long run the
system serves customers at the bottleneck rate μ1.

In Figure 3, where the corresponding contours for the mean sojourn time
E(D) are plotted, we see that increasing the service rate for queue 2 may either
increase or decrease E(D). In particular, if μ1 < 1, then making μ2 large enough
will eventually drive the system unstable and E(D) becomes infinite.

4 Conclusion

We analyzed a tandem queue with admission control based on partial informa-
tion on the network state. We showed that, although the two-dimensional state
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space of the system is infinite in both coordinate directions, the steady-state
distribution can still be analyzed using matrix-analytic methods. The approach
used in Section 2 extends to a wider class of models. For example, by mak-
ing suitable modifications to the matrices An and Bn in Section 2.1, we can
model situations where during congestion the input traffic is gradually thinned
by randomly rejecting a certain proportion of the newly arriving customers. The
approach of the paper can still be used as long as there exists a certain maxi-
mum threshold so that all newly arriving customers are rejected whenever the
length of queue 2 exceeds this maximum threshold. A different modification to
An and Bn allows to replace the second queue in the network by a delay node of
the M/M/∞ type. An interesting direction for future research is to extend this
approach to networks with more than two queues.
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Upon a customer’s arrival, the controller decides (i) whether to admit the cus-
tomer into the system or to reject it; and, if admitted, (ii) to which of K queues
in parallel to route the customer for service. Queue k ∈ IK � {1, . . . , K}, which
serves customers in FCFS order, is endowed with a pool of mk identical paral-
lel exponential servers, each working at rate μk, and has a finite buffer of size
nk ≥ mk. We will denote by Xk(t) the state of queue k at time t, given by the
number of customers it holds waiting or in service, and by ak(t) ∈ {0, 1} the
action indicator taking value 1 when a customer arriving at time t would not be
routed to queue k.

Once in a queue, customers that have not started service become impatient,
being prone to renege from the system. As introduced in Palm (1957), we as-
sume that the reneging-time distribution is exponentially distributed with rate
θk at queue k, and that interarrival, service and reneging times are mutually
independent.

The following types of cost and reward accrue: (1) holding costs, at the convex
nondecreasing rate hk(jk) per unit time that jk customers are in queue k; (2)
reneging costs, at rate ck per customer that reneges from queue k; (3) completion
rewards, at rate rk per service completed at queue k; and (4) loss costs, at rate
ν per rejected customer.

We will find it convenient to write the equivalent total net cost rate per unit
time when the joint system state is j = (jk)k∈IK and joint action a = (ak)k∈IK

prevails as
−(K − 1)λν +

∑

k∈IK

{
Ck(jk) + νQak

k (jk)
}
, (1)

where
Ck(jk) � hj(jk) + (jk −mk)+ckθk −min(jk, mk)rkμk

and
Qak

k � λak.

We will consider two versions of the problem: (i) the case where the admission
control capability is enabled; and (ii) the case where it is not, in which rejections
occur only when all buffers are full. The system is operated by adopting an
admission control and routing policy (for version (i)), or just a routing policy
(for version (ii)), denoted by π, which is drawn from the corresponding class Π
of history-dependent randomized policies.

The operation of such a system raises the following optimization problems: (i)
find a policy minimizing the expected total discounted value of net costs accrued,

min
π∈Π

E
π
i

[ ∫ ∞

0

e−αt
∑

k∈IK

{
Ck

(
Xk(t)

)
+ νQ

ak(t)
k

}
dt

]
, (2)

where α > 0 is the discount rate and i = (ik)k∈IK is the initial joint state; and
(ii) find a policy minimizing the long-run average net cost rate per unit time,

min
π∈Π

lim sup
T→∞

1
T

E
π
i

[ ∫ T

0

∑

k∈IK

{
Ck

(
Xk(t)

)
+ νQ

ak(t)
k

}
dt

]
. (3)



140 J. Niño-Mora

Notice that in (2)–(3) we have disregarded the additive constant −(K − 1)λν
in (1).

Such problems are relevant in a variety of applications, most notably in the
provision of geografically distributed telecommunication or computing services.
Thus, e.g., in a distributed call center, calls may be initially accepted or re-
jected, depending on current congestion levels. If accepted, they are routed to
one of multiple operator pools. The present model assumes that operators within
a pool are homogeneous, whereas their skills might differ across pools. It fur-
ther captures the fact that customers are prone to become impatient, possibly
abandoning the system before receiving service. A similar situation arises in the
operation of a distributed grid of computing nodes, consisting of workstation
clusters, to which jobs are to be dynamically routed. For earlier related work
see, e.g., Houck (1987), Bassamboo et al. (2005), and references therein.

While the above problems are readily formulated as discrete-time finite Markov
decision processes (MDPs), their solution via the conventional dynamic program-
ming approach is computationally intractable in large-scale models, due to the ex-
ponential growth of the state space’s size on the number of queues. We will thus
focus attention on the goals of designing, computing and testing well-grounded
heuristic policies that are readily implementable.

Since in such problems the controller must dynamically assess the relative
values of alternative rejection and routing actions, it is both intuitively appealing
and practical to do so based on an index policy. In the present model, such policies
are based on attaching to each queue k an index νk(jk), which can be thought
of as a measure of undesirability for routing a customer to queue k, given as a
function of its current state jk. Then, in the problem version with admission
control capability, an arriving customer would be admitted if ν > νk(jk) for at
least one queue k with jk < nk, i.e., if the cost of rejecting the customer exceeds
the undesirability of routing it to some nonfull queue; otherwise, the customer
would be rejected. If accepted, the customer would then be routed to a queue
with smallest current index value, among nonfull queues k for which ν > νk(jk).

Indeed, for problem version (ii), the classic Shortest Queue Routing and Short-
est Expected Delay Routing rules are examples of such index policies, with the
former known to be optimal in special symmetric cases. See, e.g., Winston (1977),
Johri (1989), and Hordijk and Koole (1990). We are thus led to address the issue
of how to define appropriate indices νk(jk) for the above problems.

Such an issue was actually resolved by the author in a broader setting in Niño-
Mora (2002a). That paper, which drew on earlier work in Whittle (1988) and
in Niño-Mora (2001), introduced the idea that problems of dynamic admission
control and/or routing to parallel queues can be formulated as restless bandit
problems (RBPs). It also established the existence of a corresponding marginal
productivity index (MPI) for the constituent bandits (which correspond to a
single queue subject to admission control), under rather general birth-death
dynamics and nonlinear cost rate functions. Further, it furnished efficient index-
computing algorithms, as well as closed index formulae for some special cases.
See also the presentation in Niño-Mora (2002b).
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However, the direct applicability of such work to models such as those ad-
dressed in this paper appears to have been overlooked. This paper thus sets out
to clarify how such results bear on the present model. While the results are pre-
sented here in abridged form, a full version of this paper with complete analyses
and extensive experimental results is currently under preparation. For related
work on the theory and applications of restless bandit indexation, see also, e.g.,
Niño-Mora (2006a, 2006b).

The remainder of the paper is organized as follows. Section 2 discusses the
reformulation of the above problems in the framework of the RBP, which allows
us to deploy the corresponding MPI policy. Section 3 reviews the indexabil-
ity analysis for appropriate single-queue admission control subproblems, along
with index-computing algorithms, which are exploited to obtain closed-form in-
dex formulae in some special cases. Finally, Section 4 reports on the results of
some preliminary computational experiments on the performance of the pro-
posed MPI policy. These show that the proposed index policy is nearly optimal,
and substantially outperforms conventional benchmark policies in the instances
investigated.

2 RBP Reformulation and MPI Policy

The formulations given in (2)–(3) have been chosen to make it apparent that
such problems fit into the framework of the RBP introduced by Whittle (1988).
The RBP concerns the optimal dynamic allocation of effort to a collection of
stochastic projects, modelled as binary-action (1/work/active; 0/rest/passive)
MDPs. Whittle considered the problem version where a fixed number M of
projects are to be engaged at each time. He showed that, for a limited class
of restless projects, which he termed indexable, there exists a state-dependent
index that characterizes their optimal policies, and proposed to use the resulting
index policy for the multi-project RBP: engage at each time M projects with
currently largest index values.

In the present model, as introduced in Niño-Mora (2002a), we identify a
“project” with a single queue fed with a Poisson arrival stream, subject to ad-
mission control. It is convenient to imagine that such a control action is exercised
by a gatekeeper who, when active, blocks access to the queue by shutting an en-
try gate, and, when passive, allows customers to enter the queue by letting the
gate open. See Fig. 1. Notice that, when the queue’s buffer is full, both actions
yield identical dynamics. We will thus term such a full state uncontrollable, and
the remaining states, where there is an effective choice of action, controllable.
Further, for consistency with the interpretation of action ak used in (1), where
ak = 1 means not routing to queue k, we will adopt the convention that the
active action is taken at uncontrollable states, i.e., ak = 1 if queue k is full.

Now, to view the present model as a multi-project RBP we represent it as a
collection of queues as above, each fed by its own arrival stream with rate λ and
having its own gatekeeper, where the actions of gatekeepers are coordinated in
such a way as to yield the required dynamics. Thus, in the problem version with
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admission control capability, at least M = K − 1 projects are to be engaged at
each time, so that at least K−1 queues’ entry gates are to be shut: if K−1 gates
are shut, an arriving customer would be routed to the queue whose gate is open,
which must be nonfull; if the K gates are shut, the customer would be rejected. In
the problem version without admission control capability, exactly exactly K − 1
queues’ entry gates are shut at any time, and an arriving customer would be
routed as in the previous case, provided there is at least one nonfull queue; if all
queues are full, the K entry gates must be shut.

Now, to deploy restless bandit indexation we decouple problems (2)–(3) into
the single-project subproblems

min
πk∈Πk

E
πk

ik

[ ∫ ∞

0

e−αt
{
Ck

(
Xk(t)

)
+ νQ

ak(t)
k

}
dt

]
(4)

and

min
πk∈Πk

lim sup
T→∞

1
T

E
πk
ik

[ ∫ T

0

{
Ck

(
Xk(t)

)
+ νQ

ak(t)
k

}
dt

]
, (5)

where ik is the initial state of queue k, and Πk is the class of admissible admission
control policies for operating the queue in isolation.

We now use the rejection cost rate ν as a parameter, and consider how the
optimal policies for such subproblems vary as ν ranges over IR. We will say that
any of the above queue k’s subproblems is indexable if there exists an index
ν∗

k(jk), defined for controllable states 0 ≤ jk < nk, such that, for any initial
state ik, it is optimal to take the active action, i.e., reject an arrival when the
queue occupies state jk, iff ν∗

k(jk) ≥ ν. In such case, we term ν∗
k(jk) the queue’s

marginal productivity index (MPI). Such a term was introduced in Niño-Mora
2006a, motivated by the interpretation of the index given there as the state-
dependent marginal cost vs. work trade-off rate.

Hence, if it were established that such an MPI exists for the above single-queue
subproblems, we could use it to implement an index policy as discussed above.

3 Single-Queue Subproblems: Indexability and MPI
Computation

In fact, the required indexability analysis was carried out in Niño-Mora (2002a),
in a broader setting of admission control problems with birth-death dynamics
and nonlinear cost rates, which includes the above subproblems as special cases.
We review here such results, which further include an efficient index-computing
algorithm, and highlight their application to the present model.

3.1 Review of Relevant Results in Niño-Mora (2002a)

Consider the system portrayed in Fig. 1, which represents a single-server facility
catering to an incoming customer stream, which is endowed with a finite buffer
capable of holding up to and including n customers, waiting or in service. Cus-
tomer flow is regulated by a gatekeeper, who dynamically opens or shuts an entry
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μ(j)

λ(j)

Entry gate

Fig. 1. Control of admission to a single queue

gate which customers must cross to enter the buffer; those finding a shut gate,
or a full buffer, on arrival are rejected and lost.

The state X(t), recording the number in system at times t ≥ 0, evolves as a
controlled birth-death process with state space N = {0, . . . , n}. While the system
occupies state j, customers arrive at rate λ(j) (being then admitted or rejected),
and the server works at rate μ(j).

The system is governed by an admission control policy π, prescribing the ac-
tion a(t) ∈ {0, 1} to take at each time t, where action 1 means shutting the entry
gate. As before, we assume that such an action must be taken when the queue
is full.

The system continuously accrues holding costs, at rate C(j) while in state
j, along with rejection charges, at rate ν per customer rejected. The equivalent
rejection cost rate under action a is therefore νQa(j), where Qa(j) � λ(j)a is
the rejection cost rate.

In such a setting, we consider the following optimization problems: (i) find a
discount-optimal admission control policy,

min
π∈Π

E
π
i

[ ∫ ∞

0

e−αt
{
C
(
X(t)

)
+ νQa(t)

(
X(t)

)}
dt

]
, (6)

where α > 0 is the discount rate and i is the initial state; and (ii) find an
average-optimal policy,

min
π∈Π

lim sup
T→∞

1
T

E
π
i

[∫ T

0

{
C
(
X(t)

)
+ νQa(t)

(
X(t)

)}
dt

]
. (7)
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We will assume that the model parameters satisfy the following regularity
conditions, where we use the notation Δx(j) � x(j)− x(j − 1), and write

d(j) = μ(j)− λ(j),

and
ρ(j) =

λ(j)
μ(j + 1)

.

Assumption 1. The following conditions hold:

(i) Concave nondecreasing d(j): 0 ≤ Δd(j + 1) ≤ Δd(j), 1 ≤ j ≤ n − 1, with
Δd(1) > 0.
(ii) Convex nondecreasing C(j): ΔC(j + 1) ≥ ΔC(j) ≥ 0, 1 ≤ j ≤ n− 1.

Now, in Niño-Mora (2002a[Th. 7.2 and Cor. 7.1]) it is proven that, under Ass. 1,
such problems are indexable, so that their optimal policies are characterized by
an MPI ν∗(j). Further, the latter is consistent with the intuitive class of threshold
policies, which prescribe to reject customers if the queue is long enough. Namely,
the MPI is monotone nondecreasing in the queue length j:

ν∗(0) ≤ ν∗(1) ≤ · · · ≤ ν∗(n− 1).

That paper further gives a recursive index algorithm, which we include here
for ease of reference:

ν∗(0) =
ΔC(1)

α + Δd(1)

ν∗(j) = ν∗(j − 1) +
ΔC(j + 1)− ν∗(j − 1)

(
α + Δd(j + 1)

)

α + Δd(j + 1) +
wS(j+1)(j − 1)

ρ(j − 1)

, 1 ≤ j ≤ n− 1,

(8)

where S(j + 1) � {j, . . . , n−1} is an active-state set corresponding to a threshold
policy, and quantities wS(j+1)(j − 1) are marginal workloads, which are recur-
sively computed by

wS(2)(0) = λ(0)
α + Δd(1)

α + λ(0) + μ(1)

wS(j+1)(j − 1) = λ(j − 1)
α + Δd(j) +

wS(j)(j − 2)
ρ(j − 2)

a(j)
(
α + λ(j − 1) + μ(j)

) , 2 ≤ j ≤ n− 1.

(9)

In (9), quantities a(j) are also recursively computed, by letting a(1) = 1, and

a(j)=1− λ(j − 1)μ(j − 1)(
α + λ(j − 2) + μ(j − 1)

)(
α + λ(j − 1) + μ(j)

) 1
a(j − 1)

, 2 ≤ j ≤ n.

(10)
For the average criterion, one need simply set the value α = 0 in the above

recursions.
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3.2 Application to the Present Model

To apply the above results to the present model, we must identify the corre-
sponding parameters for each single-queue subproblem, and verify that they
satisfy Ass. 1. Clearly, the parameters of concern should be defined as follows,
where we have dropped the queue label k in the notation:

λ(j) � λ, 0 ≤ j ≤ n,

μ(j) � (j −m)+θ + min(j, m)μ, 1 ≤ j ≤ n

C(j) � h(j) + (j −m)+cθ −min(j, m)rμ, 0 ≤ j ≤ n.

(11)

With such definitions, it is readily verified that Ass. 1 holds, and, therefore,
the results reviewed above apply to the model of concern in this paper.

3.3 Some Closed-Form First- and Second-Order MPI Formulae

In certain special cases, it is possible to solve explicitly the above index recursions
to obtain closed-form expressions for the MPI.

Thus, in the classic case of multiple M/M/1 queues (no reneging) in parallel,
with h(j) = hj and r = 0, under the average criterion, it is shown in Niño-Mora
(2002a) that the MPI is given by

ν∗(j) =
c

μ

j+1∑

i=1

(
1 + · · ·+ ρi−1

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c

μ

[
ρj+2 − 1
(ρ− 1)2

− j + 2
ρ− 1

]
if ρ �= 1

c

μ

(j + 1) (j + 2)
2

if ρ = 1,

(12)

where ρ = λ/μ.
Another interesting case is that where the objective of concern is to maximize

the system’s throughput. In the case of multiple M/M/1 queues in parallel, with
h(j) ≡ 0 and r = 1, under the average criterion, the index recursion above yields
the constant MPI ν∗(j) ≡ −1. Since such an index is noninformative, we proceed
as in Niño-Mora (2006b) by introducing a tie-breaking, second-order MPI γ∗(j),
based on the MacLaurin expansion on the discounted MPI,

ν∗(j) = −1 + αγ∗(j) + O(α), as α↘ 0.

Thus, the corresponding index policy routes customers to a queue with smallest
second-order MPI.

It is readily verified that such a second-order MPI is computed recursively by

γ∗(0) = 1/μ

γ∗(j) = γ∗(j − 1) +
1
μ

(
1 + · · ·+ ρj

)
, 1 ≤ j < n.

(13)

Further, the solution to such a recursion is as follows. In the case ρ = λ/μ �= 1,

γ∗(j) =
j + 1− (j + 3)ρ + ρ2 + ρj+1

μ(ρ− 1)2
,
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and, in the case ρ = 1,

γ∗(j) =
2 + j + j2

2μ
.

4 Some Computational Experiments

This section reports on some preliminary experimental results on the relative per-
formance of the proposed MPI policy. More thorough results, resulting from a
large-scale computational study, will be reported in the full version of this paper.

In the following experiments, the performance of the MPI policy is compared
against the optimal performance, and against the performance of two bench-
mark policies: the classic Shortest Queue (SQ) routing policy, and the Smallest
Expected Cost (SEC) routing policy, which is the individually optimal policy.
The experiments were performed with MATLAB 2006b, using implementations
developed by the author. The optimal performance was computed by solving the
linear programming formulation of the corresponding DP equations, using the
CPLEX solver interfaced with MATLAB via TOMLAB. The alternative policies
considered were evaluated by solving the appropriate linear evaluation equations.

In the first experiment, we investigate how relative performance varies with
the arrival rate λ, using the the base instance having K = 2 queues in parallel,
and the following parameters. Buffer sizes are (n1, n2) = (25, 25), the numbers
of servers are (m1, m2) = (4, 5), the service rates are (μ1, μ2) = (0.60, 0.40),
the reneging rates are (θ1, θ2) = (0.2, 0.2), the holding cost rates are (h1, h2) =
(1, 1), the reneging cost rates are (c1, c2) = (0.3, 0.3), the completion rewards
are (r1, r2) = (1, 1), and the cost per rejected customer is ν = 0. We investigate
the model under the long-run average criterion, and in the version where only
routing decisions are allowed.
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Fig. 2. Exp. 1: Relative suboptimality gaps of MPI, SEH and SQ policies as λ varies
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ν

av
er

a
g
e

co
st

OPT

MPI

1 4

2

14

Fig. 4. Exp. 3: Performance of MPI and optimal (OPT) routing policies as ν varies

Fig. 2 plots the relative suboptimality gaps of the MPI, SEC and SQ policies
as the arrival rate λ varies over the interval [1, 7]. The plot shows that the MPI
policy is nearly optimal throughout such a range, consistently outperforming the
SEC and SQ policies. The SEC policy is better than the SQ policy in relatively
light traffic, whereas the opposite holds in heavier traffic. The plot further shows
that the three policies are asymptotically optimal in heavy traffic.

In the second experiment, we investigated how relative performance varies
with a constant reneging rate θ, using a base instance as in the previous experi-
ment, fixing the arrival rate to λ = 2. Fig. 3 plots the relative suboptimality gaps
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Fig. 5. Exp. 4: Relative suboptimality gaps of MPI, SEH and SQ policies as λ varies

of the MPI, SEC and SQ policies as the reneging rate θ varies over the interval
[0.1, 0.35]. Again, the plot shows that the MPI policy is nearly optimal through-
out such a range, consistently outperforming the SEC and SQ policies. Among
the latter, the SEC policy is the better one, with its relative suboptimality gap
ranging from between 8% to 10%.

In the third experiment, we investigated how relative performance varies with
the rejection cost rate ν, in the problem version with admission control capa-
bility, using a two-queue base instance with parameteres (n1, n2) = (25, 25),
(m1, m2) = (4, 5), (μ1, μ2) = (0.60, 0.40), (θ1, θ2) = (0.2, 0.2), (h1, h2) = (1, 1),
(c1, c2) = (0.3, 0.3), (r1, r2) = (3, 3), and λ = 4. Fig. 4 plots the average cost
incurred by the MPI policy and the optimal average cost, as nu ranges over
the interval [1, 4]. Again, the plot shows that the MPI policy is nearly optimal
throughout such a range.

Finally, in the fourth experiment, we investigated how relative performance
varies with the arrival rate λ in a problem where the objective is to maximize
expected total discounted throughput, using the the base instance having K = 2
queues in parallel, and the following parameters: (n1, n2) = (25, 25), (m1, m2) =
(4, 5), (μ1, μ2) = (0.60, 0.40), (θ1, θ2) = (0.2, 0.2), (h1, h2) = (0, 0), (c1, c2) =
(0, 0), (r1, r2) = (1, 1), and the cost per rejected customer is ν = 0. We investigate
the model under the discounted criterion, with discount rate α = 0.01, letting λ
range over [1, 7].

The results are shown in Fig. 5, where it is seen that, again, the MPI policy
is nearly optimal throughout the parameter range, while the SEC policy exhibits
a moderately poor performance, and the SQ policy shows a substantially worse
performance.
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Abstract. A brief overview of some interesting dynamics commonly
arising as scaling limits of stochastic approximation type algorithms is
given, with sample applications to communications.

Keywords: stochastic approximation, power control, routing, dynamic
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1 Introduction

Stochastic approximation [16] is a tried and tested paradigm for adaptive algo-
rithms, which exploit its incrementality (leading to graceful convergence), low
per iterate computational and memory requirements, and its ‘averaging’ prop-
erty which makes it ideal for noisy situations. While it retains its place of pride in
its traditional application domains such as adaptive control and signal process-
ing, it has also found new applications in communications, such as in adaptive
resource allocation problems arising in wireless and wireline networks. This is
a brief summary of some key paradigms that fall in this category. An impor-
tant development in stochastic approximation theory, going back to [7], [15], has
been the ‘o.d.e.’ (for ‘ordinary differential equations’) approach which allows us
to analyze the algorithm in terms of a limiting o.d.e. In turn, an o.d.e. can be
mapped onto an algorithm. Thus we list certain classes of convergent o.d.e.s as
proto-algorithms and give examples of actual algorithms where their convergence
properties have been exploited.

2 Stochastic Approximation

These are stochastic recursions in Rd of the form

xn+1 = xn + a(n)[h(xn) + Mn+1], n ≥ 0,

where h is Lipschitz, {Mn} a martingale difference (i. e., E[Mn+1|xm, Mm, m ≤
n] = 0) satisfying E[‖Mn+1‖2|xm, Mm, m ≤ n] ≤ K(1 + ‖xn‖2) for some K > 0,
and {a(n)} is a stepsize schedule, i. e., positive scalars, satisfying

∑
n a(n) =∞

and
∑

n a(n)2 <∞. (This is a typical set of conditions, variations are possible.)

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 150–157, 2007.
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The o.d.e. approach says that under suitable conditions (which in particular
should ensure the a. s. boundedness of iterates), the iterates have a. s. the same
asymptotic behavior as the o.d.e.

ẋ(t) = h(x(t)).

In case of the o.d.e. having a finite set of isolated attractors, one can refine this
(under mild additional assumptions) to say that {xn} a. s. converges to a stable
attractor. Some important variations are:

1. Projected schemes: When the a. s. boundedness of {xn} cannot be ensured
a priori, one may project the iterate to a compact convex set whenever it
exits from this set. This leads to a ‘projected o.d.e.’ limit. One needs to
ensure, however, that no spurious boundary equilibria are introduced by the
projection.

2. Markov noise: Here h(xn) above gets replaced by h̃(xn, Zn), where {Zn} is
an ergodic Markov process with marginal μ. The same o.d.e. applies with
h(x) =

∫
h̃(x, z)μ(dz).

3. Two timescale systems: These are coupled iterations

xn+1 = xn + a(n)[h(xn, yn) + Mn+1],
yn+1 = yn + b(n)[g(xn, yn) + M ′

n+1],

with conditions similar to the above on h, g, {Mn}, {M ′
n}, and with

∑
n a(n) =∑

n b(n) = ∞,
∑

n a(n)2 +
∑

n b(n)2 < ∞, b(n)
a(n) → 0. Thus the second it-

eration moves on a slower timescale and sees the first as quasi-equilibrated,
which in turn sees it as quasi-static. To analyze this, consider the o.d.e. ẋ(t) =
h(x(t), y) and suppose it has a globally asymptotically stable equilibrium λ(y)
for a ‘nice’ λ(·). Also consider ẏ(t) = g(λ(y(t)), y(t)) and suppose it has a
unique globally asymptotically stable equilibrium y∗. Then under reasonable
conditions, (xn, yn)→ (λ(y∗), y∗) a. s.

4. Asynchronous schemes: Suppose different components of xn are updated by
different processors, not all of which update at each time (i. e., they have
their own ‘clocks’) and which communicate their outputs to each other with
random delays. The i−th component is then updated according to

xn+1(i) = xn(i) + a(ν(i, n))I{i ∈ Yn}[hi(xn−τi1(n)(n),
· · · , xn−τid(n)) + Mn+1(i)],

where Yn is the set of components updated at time n, {τij(n)} the delays, and
ν(i, n) =

∑
m≤n I{i ∈ Ym} the local clock. One can show that the iterates

then track the nonautonomous o.d.e. ẋ(t) = Λ(t)h(x(t)), where Λ(t) is a
diagonal matrix with nonnegative entries. The same is true when a(ν(i, n))
is replaced by a(n). This o.d.e. in some cases of interest can be shown to
have the same asymptotic behavior as that corresponding to Λ(·) ≡ the
identity matrix, if lim infn→∞ ν(i, n)/n > 0 for all i, i. e., the components
are updated comparably often.
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5. Constant stepsize: One often considers a(n) ≡ a > 0, e.g., when tracking a
slowly varying environment. Then the standard claims of ‘converges a. s. to
· · ·’ for decreasing stepsizes above need to be replaced by the corresponding
statement ‘concentrates with a high (≈ 1−O(a)) probability near · · ·’.

See [3] for details.

3 Stochastic Gradient Schemes

Here h = ∇f for a suitable f and thus {xn} converge a. s. to a local maximum
of f . As an example [1], consider N users sharing an ergodic Markov channel
with stationary distribution ν. The aim is to minimize average power subject to a
minimum rate constraint. Let A denote the set of unit coordinate vectors in RN ,
the i−th vector signifying the choice of i−th user for the slot. Let p2(y|x) denote
the conditional distribution of the user given channel state and p1(q|y, x) the
conditional distribution of this user’s power consumption. The problem becomes

min
∫

ν(dx)
∑

y∈A

∫ ∞

0

p1(dq|y, x)p2(y|x)q subject to

∫
ν(dx)

∑

y∈A

∫ ∞

0

p1(dq|y, x) log(1 + qyixi) ≥ Ci ∀i.

The optimal solution is to select user

k = argmini

(
(λi − 1

xi
)+ − λi[log(1 + (λi − 1

xi
)+xi)− Ci]

)
,

who will transmit power

q∗ = (λk − 1
xk

)+,

λi being the Lagrange multiplier associated with the i−th constraint. The latter
can be learnt adaptively by the stochastic gradient scheme

λi(n + 1) = Γ (λi(n)− a(n)yi(n)[log(1 + (λi − 1
xi

)+xi(n))− Ci]), ∀i.

Here yi(n) = I{αi ≤ αj , j �= i} for

αi = q∗i − λi(n)[log(1 + (λi − 1
xi(n)

)+xi(n))− Ci], 1 ≤ i ≤ N,

and Γ is projection to [0, L] for a large L. The idea is to use the Lagrange
multiplier formulation in order to cast the constrained optimization problem as
an unconstrained min-max (= max-min) problem, do the minimization over both
the users and power explicitly as above, and the maximization over Lagrange
multipliers by stochastic approximation. The foregoing theory ensures desired
asymptotics, which is also verified by simulation experiments [1].
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4 Fixed Point Iterations

Here h(x) = F (x) − x, where F is a contraction w.r.t. a suitable norm and
the aim is to find its unique fixed point x∗ given by x∗ = F (x∗). This can be
shown to be the unique asymptotically stable equilibrium for the o.d.e. limit
ẋ(t) = F (x(t)) − x(t). This can be extended to nonexpansive maps in some
cases.

The standard application of this is to dynamic programming. Consider, e.g.,
the nonnegative integer valued queue process {Xn} given by Xn+1 = Xn−un +
Wn+1, where {Wn} is the i.i.d. packet arrival process with law μ and un ∈ [0, xn]
is the number of packets transmitted at time n. Consider a constrained Markov
decision process that seeks to minimize

lim sup
n→∞

1
n

n−1∑

m=0

c(Xm, um) s. t. lim sup
n→∞

1
n

n−1∑

m=0

ci(Xm, um) ≤ Ci, 1 ≤ i ≤ N.

Using a standard Lagrange multiplier formulation [2], this can be reduced to
an unconstrained MDP with running cost c +

∑
i λici, with λi’s the Lagrange

multipliers. The corresponding dynamic programming equation is

Ṽ (x) = min
u

[c(x, u) +
N∑

i=1

λici(x, u)− β +
∑

w

μ(w)Ṽ (x− u + w)].

Here β is the optimal cost. One may view the transition Xn → Xn+1 as a
composition of Xn → X+

n = Xn − un (the ‘post-state’) and X+
n → Xn+1 =

X+
n + Wn+1. In terms of {X+

n }, the dynamic programming equation becomes

V (x) =
∑

w

μ(w) min
u

[c(x + w, u) +
N∑

i=1

λici(x + w, u)− β + V (x− u + w)].

The difference is that the minimization is now inside the expectation. This allows
us to write the stochastic approximation version of the corresponding ‘relative
value iteration’:

Vn+1(i) = Vn(i) + a(ν(i, n))I{X+
n = i}[min

u
[c(Xn+1, u) +

N∑

i=1

λi(n)ci(Xn+1, u)− Vn(i0) + V (Xn+1 − u)].

Here i0 is a prescribed state and ν(i, n) =
∑

m≤n I{Xm = i}. The Lagrange
multipliers are updated on a slower timescale by the stochastic ascent.

λi(n + 1) = λi(n) + b(n)[ci(Xn, un)− Ci] ∀i.
The convergence can be proved by using the two timescale analysis above, that
the slow component performs the correct gradient ascent being a consequence
of the generalized ‘envelope theorem’ from mathematical economics. See [17] for
details and simulations.
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5 Cooperative o.d.e.

This is the case when ∂hi

∂xj
> 0, j �= i. (More generally, ‘≥ 0’ and the Jacobian

matrix of h is irreducible.) These are called cooperative o.d.e.s because any in-
crease in the i−th component leads to an increase in j−th component of the
driving vector field for j �= i. If the trajectories remain bounded, then for all
initial conditions belonging to an open dense set, x(·) converges to the set of
equilibria [12], [19].

As an application, we consider the problem of dynamic pricing in a system of
parallel queues [5], [9]. There are K parallel queues and an entry charge pi(n)
is charged for the i−th queue. Let yi(n) denote the queue length in i−th queue
at time n. There is an ‘ideal profile’ y∗ = [y∗

1 , · · · , y∗
K ] of queue lengths which

we want to stay close to, and the objective is to manage this by modulating
the respective prices dynamically. Let Γi denote the projection to [εi, Bi] for
0 ≤ i ≤ K, where εi > 0 is a small number and Bi is a convenient a priori upper
bound. Let a > 0 be a small constant stepsize. The scheme is: for 1 ≤ i ≤ K,

pi(n + 1) = Γi (pi(n) + api(n)[yi(n)− y∗
i ]) , n ≥ 0.

The idea is to increase the price if the current queue length is above the ideal
(so as to discourage new entrants) and decrease it if the opposite is true (to
encourage more entrants). The scalar εi is the minimum price which also ensures
that the iteration does not get stuck at zero. We assume that if the price vector is
frozen at some p = [p1, · · · , pK ], the process of queue lengths is ergodic. Ignoring
the boundary of the box B = Πi[εi, Bi], the limiting o.d.e. is

ṗi(t) = pi(t)[fi(p(t))− y∗
i ], 1 ≤ i ≤ K,

where p(t) = [p1(t), · · · , pK(t)] and fi(p) is the stationary average of the queue
length in the i−th queue when the price vector is frozen at p. It is reasonable
to assume that if the εi’s are sufficiently low and the Bi’s are sufficiently high,
then p(t) is eventually pushed inwards from the boundary of B, so that we may
ignore the boundary effects and the above is indeed the valid o.d.e. limit for the
price adjustment mechanism. It is also reasonable to assume that ∂fi

∂pj
> 0, as

increase in the price of one queue keeping all else constant will force its potential
customers to other queues. Thus the foregoing applies. One can say more: Letting
f(·) = [f1(·), · · · , fK(·)]T , it follows by Sard’s theorem that for almost all choices
of y∗, the Jacobian matrix of f is nonsingular on the inverse image of y∗. Hence
by the inverse function theorem, this set, which is also the set of equilibria for the
above o.d.e. in B, is discrete. Thus the o.d.e. converges to a point for almost all
initial conditions. Hence the stationary distribution of {p(n)} concentrates near
the equilibria of the above o.d.e. Note that all equilibria in B are equivalent as far
as our aim of keeping the vector of queue lengths near y∗ is concerned. Thus we
conclude that the dynamically adjusted prices asymptotically concentrate near
one point which achieves the desired queue length profile, giving it the right
‘pushes’ if it deviates.
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6 Replicator Dynamics

This is the o.d.e. from evolutionary biology [13] given by

ẋi(t) = xi(t)[Di(x(t)) −
∑

j

xj(t)Dj(x(t))], 1 ≤ i ≤ N.

The original interpretation is that xi(t) is the fraction of population of the i−th
species (among N species) and Di(x(t)) its payoff given the current composition
of the population. The dynamics, which evolves on the simplex of probability
vectors in RN , then says that the population of the i−th species increases, resp.
decreases in proportion to the difference between its payoff and the average payoff
of the population, depending on the sign of this difference. Two important cases
when it converges are when −D is ‘monotone’, i.e., 〈x−y, D(x)−D(y)〉 < 0, and
when Di(x) = ∂f

∂xi
(x) for some f , which is called a potential function - see [18]

for an application to congestion pricing. More generally, however, it can display
nonconvergent behavior.

This has been applied to a network routing problem in [4], where x(t) is in
fact of the somewhat more general form x(t) = [[xij(t)]]1≤i≤N,j∈J(i), where N
is the number of nodes and J(i) is the set of neighbors of i. One has xij(t) ≥
0,

∑
j xij(t) = 1 for each i. Thus each vector xi·(t) is separately a probability

vector, indicating the probabilities with which i−th node directs its traffic to
its neighbors. This leads to a coupled system of replicator dynamics. Other
important features are as follows:

– The payoffs are negative of the mean delays associated with the routing
decision. These are separately estimated by an averaging scheme on a faster
timescale.

– The actual update omits the last component of each probability vector, set-
ting it equal to one minus the sum of the rest. The updates are then projected
to a subprobability simplex. This avoids too many projection operations.

The details may be found in [4].

7 Generalized Cohen-Grossberg Model

The o.d.e.

ẋi(t) = ai(x(t))[bi(xi(t))−
∑

j

cijfj(
∑

k

cjkgk(xk(t)))].

generalizes the Cohen-Grossberg model in neural networks [10]. Assume:

– ai(x), bi(y), fi(y), gi(y), g′i(y) > 0 and are Lipschitz, where g′i = dgi

dy .
– cij = cji.
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Then

V (x) =
∑

i

(
∫ ∑

j cijgj(xj)

0

fi(y)dy −
∫ xi

0

bi(y)g′i(y)dy)

serves as a Liapunov function because dV (x(t))/dt ≤ 0, as can be easily veri-
fied. This subsumes the Kelly-Maulloo-Tan model of dynamic pricing [14]. An-
other ‘network’ interpretation is described below: One can have a ‘neighbourhood
structure’ by having N(i) Δ= the set of neighbours of i, with the requirement that

cij = cji > 0⇐⇒ i ∈ N(j)⇐⇒ j ∈ N(i).

One can allow i ∈ N(i). Suppose:

– j ∈ N(i) if j’s transmission can be ‘heard’ by i.
– xj(t) = the traffic originating from j at time t.
– {cij} capture the distance effects.
–

∑
k cjkgk(xk(t)) = the net traffic ‘heard’ by j at time t.

– Each node reports the volume of the net traffic heard by it to its neighbours
and updates its own traffic so that the higher the net traffic it hears =⇒ it
decreases its own flow correspondingly more.

An equilibrium of this o.d.e. will be characterized by

bi(xi) =
∑

j

cijfj(
∑

k

cjkgk(xk)) ∀i.

8 Other Models

Other interesting dynamics include:

– the ‘fictitious play’ from evolutionary game theory wherein each agent plays
his best response to the adversary’s empirical policy [8],

– the ‘double bracket’ equation [11],
– various models of flocking behavior [6].

These don’t seem to have found applications in communications yet.
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Abstract. We discuss the design of an overload control protocol from
an optimisation perspective. The design process starts with the formula-
tion of a convex optimisation problem. We then construct a distributed
algorithm for this problem by applying Lagrangian decomposition. The
different components make use of models of their environment to ensure
convergence of the algorithm. We show how the constructed algorithm
is implemented by GOCAP, an overload control protocol currently un-
dergoing standardisation.

Keywords: Overload Control, Convex Optimisation, Lagrangian De-
composition, Distributed Algorithms, Protocol Design.

1 Introduction

GOCAP (Generic Overload Control Application Protocol) is a protocol currently
undergoing standardisation within the European Telecommunications Standards
Institute (ETSI) [1]. Its purpose is to provide a general mechanism for protecting
hosts and servers in Next Generation Networks against processing overload, and
its design has been informed by previous experience of overload control in PSTN
and Intelligent Network Services [2]. In this paper we motivate the design of
GOCAP from the viewpoint of distributed optimisation. We present some of the
key requirements as specified by the GOCAP design team and argue that these
requirements can be associated with the formulation of a convex optimisation
problem. We then apply Lagrangian decomposition techniques to construct a
distributed algorithm for this problem. It turns out that GOCAP can be viewed
as an implementation of this algorithm, which provides useful verification of its
design.

The optimisation-centric approach to protocol design has received significant
interest in recent literature [3]. This paper introduces two contributions to this
research area. The first contribution is the component graph, a graphical rep-
resentation of the Lagrangian associated with an optimisation problem. This
representation is useful for laying out different decompositions and exposing the
communication requirements for distributed algorithms based on such decompo-
sitions. The second contribution is an approach to designing the algorithm. Most
algorithms proposed in the literature use variants of gradient search methods,
which can have expensive communication requirements. In our approach, each
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agent participating in the algorithm is solving a local problem in a single step.
The local problem changes as neighbouring agents solve their local problems and
this can give rise to oscillations or instability. We show how this can be avoided
by allowing the agents to construct a simple internal model of their environment.

2 The Overload Control Problem

2.1 Requirements

The processing capacity of servers in Next Generation Networks will be dimen-
sioned against predictable peak load profiles. Occasionally, due to media stim-
ulated events, disasters, or network failures, request rates may still exceed a
server’s capacity. In such a scenario, as the demand for processing capacity in-
creases, there will be a point at which the server will start to reject some requests.
As the rejection of requests itself requires processing effort, a further increase in
the offered load may ultimately lead to a performance collapse, characterised by
buffer overflows and unacceptable response times. Typically, the throughput as
a function of the offered load is as depicted in Fig. 1.

maximum
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rejection rate response
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handling not
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C
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Fig. 1. Throughput and response time as a function of offered load (From [2])

A server will generally receive different types of requests from a variety of
sources. The main ingredient of the overload control mechanism is a rate restric-
tor associated with each request type and each source, which is implemented
at the source by means of a ‘leaky bucket’. For each of the rate restrictors, the
mechanism will determine the maximum rate at which requests can be offered
to the server. The requirements for the control mechanism are outlined in the
ETSI technical report [1], from which we extract the following: different request
types can have different importance levels and should be prioritised accordingly;
processing resources should be shared fairly between sources offering requests of
the same type; throughput should be maximised.

The requirements state explicitly that the system should converge to an ac-
ceptable steady state when demands are constant. The first step in our process
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of designing an overload control protocol is to describe that steady state be-
haviour as the solution to an optimisation problem. Demand levels will appear
as parameters in the problem formulation. In general, demand levels change over
time and the optimal solution changes correspondingly. Our protocol will have
to implement a distributed algorithm that converges quickly, so that the system
can track this time-varying optimal solution sufficiently closely.

2.2 Optimisation Formulation

We use the term stream for any pair of location and request type for which a
rate restrictor is introduced. Let I be the collection of streams. For each i ∈ I,
requests for stream i are generated at a demand rate di. We will control the rates
xi at which these requests are offered to the server. Since we want to maximise
throughput, the aggregate rate xa =

∑
i∈I xi should not exceed the target level

C (see Fig. 1). In order to differentiate between all possible rate allocations, we
introduce the ‘utility function’

U({xi}) =
∑

i∈I
ui(xi) =

∑

i∈I
πi log(xi) . (1)

The weights πi, i ∈ I, enable us to attach different levels of importance to
different streams. If two streams have the same weight and experience the same
demand, maximising the sum of the logarithmic utility functions ensures that
both streams will receive equal allocations. Alternative allocation strategies, for
example implementing guaranteed service rates, can be captured by adopting
different utility functions.

For constant demand levels di and target rate C, the overload control mech-
anism should converge to offered rates xi that solve the following problem:

max
∑
i∈I

πi log xi

s.t.
∑
i∈I

xi = xa

xa ≤ C
0 ≤ xi ≤ di , i ∈ I

(2)

Problem (2) is a relatively simple convex optimisation problem: Stefanov [4]
gives an O(n2) algorithm for a slightly more general version. The algorithms
presented in the literature typically require knowledge of all the parameters
in the formulation. In our scenario, however, the server can only measure the
aggregate rate xa and it cannot derive the values of di from observations of xa.
In Section 3 we will construct a distributed algorithm in which the sources and
the server collectively find the appropriate rates.

2.3 The Lagrangian Component Graph

With problem (2) we can associate the Lagrangian

L(x; y) =
∑

i∈I
πi log xi − ya(

∑

i∈I
xi − xa)− ys(xa − C)−

∑

i∈I
yi(xi − di) , (3)
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where ys and xi, yi, i ∈ I are restricted to be nonnegative. We are interested in
finding the saddle point of L, solving

max
x

min
y

L(x; y) . (4)

The Lagrangian L can be represented as a component graph as in Fig. 2, for a
scenario in which I = {1, 2, 3}. The primal variables xa and xi, i ∈ I, are rep-
resented by circles, while the dual variables ya, ys, and yi, i ∈ I, are represented
by squares. Individual components of the Lagrangian (3) are represented by
‘blobs’ connecting the variables that appear in them. Non-negativity conditions
are represented by open blobs connected to the relevant variables.

stream 1

stream 2

stream 3

aggregation server

y1

y2

y3

x1

x2

x3

ya xa ys

π1 log x1

π2 log x2

π3 log x3

y1d1

y2d2

y3d3

ysC

−y1x1

−y2x2

−y3x3

−yax1

−yax2

−yax3

+yaxa −ysxa

Fig. 2. Component graph representation of the Lagrangian L

L is a concave-convex function, and its saddle point is characterised by the
Karush-Kuhn-Tucker (KKT) conditions (see, e.g., [5]). These conditions can be
associated with the individual variables: each primal (dual) variable selects its
value such as to maximise (minimise) the value of the Lagrangian for given values
of all other variables. For each variable, only those components of the Lagrangian
that contain that variable need to be considered (and can be read directly from
the graph). For example, the condition for ys requires that Lys(ys) = ysC−ysxa

is minimised over ys ≥ 0. If xa > C, this problem is unbounded. Therefore, the
condition translates into

xa ≤ C , ys(C − xa) = 0 . (5)

3 Distributed Algorithm

3.1 Decomposition

The first step in our design process was to formulate the optimisation problem
and the corresponding Lagrangian. In the second step, we create a number of
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sub-systems, each responsible for a number of variables. The choice of decom-
position is often imposed on us by the physical distribution of the elements in
a system. Some variables in the overload control problem are naturally ‘owned’
by the sources and others by the server. The decomposition can also be purely
functional, with different functions implemented on the same host.

In Fig. 2, we have identified a partition of the set of variables into five subsets.
With each such subset, we can now associate a partial Lagrangian. For example,
the partial Lagrangian for the ‘local’ variables y1 and x1, i.e., for the sub-system
of stream 1, is

L1(x1; y1) = π1 log x1 − y1(x1 − d1)− yax1 , (6)

defined for nonnegative y1.
Each partial Lagrangian is typically defined with respect to some given values

of other, ‘environmental’ variables. For example, ya appears as an environmental
variable in the definition of L1. In the component graph, environmental variables
can be identified quite easily as those variables that are connected to at least
one of the local variables.

The KKT condition associated with any variable z for the saddle point of the
global Lagrangian L, is now represented by an identical KKT condition for the
partial Lagrangian for which z is a local variable. Thus, if all partial Lagrangians
are simultaneously in their saddle points, L itself is also in its saddle point.

The saddle point for the partial Lagrangian of stream i is

x∗
i = min{πi

ya
, di} , y∗

i = max{0,
πi

di
− ya} . (7)

For the aggregation sub-system, it is

x∗
a =

∑

i∈I
xi , y∗

a = ys , (8)

and for the server sub-system, we find

y∗
s

⎧
⎨

⎩

= 0 if xa < C
≥ 0 if xa = C
=∞ if xa > C

. (9)

3.2 A Naive Algorithm

Given a decomposition, we now have to determine how each sub-system chooses
the values of its local variables in response to changes in its environment. It
is tempting to try out the following naive algorithm. Whenever a sub-system
receives a new value of one of its environmental variables from a neighbouring
sub-system, it determines the new saddle point for its local Lagrangian. It then
sends the new values of its variables to its neighbours, who will update their
local saddle points, and so on. If such an algorithm converges, it converges to
the saddle point of the global Lagrangian.
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The corresponding required communication channels stand out clearly as links
that connect sub-systems in the component graph. In Fig. 2, we can identify
four such channels: one between the aggregation component and each of the
three streams, and one between the aggregation component and the server. Note
that the channels are bi-directional. For example, stream 1 will communicate
the value of x1 to the aggregation component and, reciprocally, the aggregation
component will send the value of ya to (the source of) stream 1.

In [6] we showed how this approach applied to the network flow formulation
of the shortest path problem resulted in the Bellman-Ford algorithm, which is
at the heart of so called distance vector routing protocols. Unfortunately, in the
decomposition of Fig. 2, convergence is not guaranteed. Assume that the server
has just determined a new value of ys. The aggregation sub-system will respond
by setting ya = ys, and the sources will then set the offered rates according
to (7): xi = min{πi/ya, di} = min{πi/ys, di}. Thus, for any value of ys set by
the server, the rest of the system will respond by generating a unique total offered
rate

xa = xa(ys) =
∑

i∈I
xi =

∑

i∈I
min{πi

ys
, di} . (10)

But, observing a particular value of xa, the server’s response will be to set ys = 0,
if xa < C, and ys = ∞, if xa > C. If

∑
i∈I di > C, this leads to a constant

flipping between ys = 0 and ys =∞.
One approach that will remedy this problem is to adjust ys more gradually.

For example, we could use something similar to the dual algorithm proposed by
Kelly et al. in [7] for the flow control problem. In a setting in which all sources
adjust their rates instantaneously to new values of ys, the dynamic system

ẏs = μ(xa(ys)− C) (11)

can be shown to converge to the value y∗
s at which the entire system will be in

its saddle point, for any positive value of the update rate μ. If the adjustment
process requires a significant amount of time, however, μ would have to be small
and convergence would be slow. We will now discuss a scheme in which ys can
make ‘big’ adjustments while avoiding the type of oscillations identified above.

3.3 Modelling the Environment

One interpretation of the difficulty that leads to the oscillation in the naive
algorithm is that the server, in choosing a new value for ys, fails to adequately
anticipate the effect, made explicit in (10), that this new value will have on
the returned load, xa. On the other hand, if the server had available all the
parameters of the global optimisation problem, it could find the optimal value
y∗

s in a single step, communicate this to the aggregation sub-system, let the
sources limit the load they offer, and the problem would be solved in a single
iteration. But, while the server knows the weights, πi, it is considered infeasible
for it to learn directly the demands, di. As a consequence, it can only construct an
approximate model, but hopefully one that is good enough to make the algorithm
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converge. We adopt a model in which the server treats all the traffic as if it
belongs to a single stream of the same form as the individual streams in Fig. 2.
Since there is no need for explicit aggregation, it imagines it is participating in
the Lagrangian

L̃(xm; ys, ym) = πm log xm − ym(xm − dm)− ys(xm − C) , (12)

which is a simpler version of (3), where dm models the total demand, and xm

models the total offered rate. The server has to choose appropriate values for the
parameters πm and dm. It does this by reconciling the model (12) with the actual
aggregate load xa that it has received in response to its current value of ys. In the
model, given a value for ys, the value of xm is given by xm = min(πm/ys, dm),
which, as a model of a single stream, is equivalent to (7). For this to be compatible
with the actual load we must have xm = xa. Then, depending on whether
1) πm/ys or 2) dm is limiting, we obtain two possibilities for the parameters πm

and dm:

1) πm = xays, dm >
πm

ys
= xa 2) πm > dmys = xays, dm = xa . (13)

The inequalities are resolved conservatively. In the first case the server assumes
dm = ∞. In the second case the server knows the utilities, πi log(xi), of the
individual flows and can derive an upper bound, ysxa <

∑
i∈I πi, from (10), to

use as a value for πm. With these values (13) becomes

1) πm = ysxa, dm =∞ 2) πm =
∑

i∈I
πi, dm = xa . (14)

Finally the server must decide whether to choose model 1 or model 2. It does
this on the basis of an externally configured parameter ε. If ys > ε it assumes the
stream is being restricted and it chooses model 1. In the saddle point of (12),
we then find y′

s = ysxa/C. If ys ≤ ε the server assumes the stream is demand
limited and it adopts model 2, and finds y′

s = 0 if xa < C, and y′
s =

∑
i∈I πi/C

if xa ≥ C. The behaviour of all the sub-systems is summarised in Algorithm 1.
As an example, consider a server with a target rate C = 100, and three streams

with priorities π1 = 1, π2 = 5, π3 = 10, and demands d1 = 50, d2 = 60, d3 = 10.
The total offered rate xa as a function of ys, captured in (10), is depicted as the
black curve in Fig. 3. The grey curve represents the combinations of ys and xa

that satisfy the KKT condition (5) for ys. Their intersection gives the desired
operating point.

Initially, ys = 0, and xa =
∑

i∈I di = 120. The server is overloaded and
responds by setting ys to a high value

∑
i∈I πi/C. The sources reduce the offered

rates in response, ensuring xa < C. In each of the subsequent iterations, ys is
reduced, maintaining xa < C and converging monotonically towards xa = C
([1], p34). A number of iterations for ys have been depicted in Fig. 3. Open
squares represent the state of the system that the server is aiming at when it is
updating ys, i.e., the saddle point of L̃(xm; ys, ym) as given in (12). Open circles
represent the state of the system after the sources have responded to a change
in the value of ys.
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Algorithm 1.

server
Initialisation: ys = 0
Update step: given current value ys and received total rate xa, set

y′
s =

⎧
⎨

⎩

ysxa/C if ys > ε
0 if ys ≤ ε and xa < C∑

i∈I πi/C if ys ≤ ε and xa ≥ C
. (15)

Communication: send y′
s to aggregation

aggregation
Initialisation: ya = 0, xa = 0
Update step: given values of xi and ys, set y′

a = ys and x′
a =

∑
i∈I xi.

Communication: send y′
a to all streams and x′

a to server

stream i
Initialisation: yi = 0, xi = 0
Update step: given demand di and received ya, set

y′
i = max{πi

di
− ya, 0} , x′

i = min{πi

ya
, di} . (16)

Communication: send x′
i to aggregation

4 GOCAP

GOCAP has originally been designed to satisfy the requirements that led us to
formulating problem (2). It is therefore not entirely unexpected that GOCAP
can be shown to solve that problem. Still, it is quite striking to see how closely
the protocol matches our distributed algorithm.

In the GOCAP architecture [1], three GOCAP-specific functional components
have been specified, labelled M, R, and D. The monitoring and restriction mas-
tering function (M), measures the offered load and uses that information to adapt
the restriction level. Restrictors (R) restrict the demand at the source, on the
basis of updates of the restriction level, which are distributed by the distribution
function (D). The three components can be associated with the server, stream,
and aggregation sub-systems in the component graph and our algorithm.

The monitoring and restriction mastering function in GOCAP maintains a
control parameter X , which we can identify as being equal to 1/ys. It measures
the total offered rate xa and then uses the target rate C to adjust X to X ′ =
XC/xa, which is equivalent to the update rule used in (15) for ys > ε (taking into
account X = 1/ys). GOCAP can be operating in either of two modes, “Closed-
Loop Control” or “Monitoring”, which can be associated with the case when
ys > ε or ys ≤ ε, respectively. If it is in the Closed-Loop mode and the offered
rate is significantly less than the target rate C for a considerable period of time,
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Fig. 3. A number of steps in the algorithm

GOCAP switches to the Monitoring mode. In our algorithm, ys approaches 0 in
the same scenario and the mode switch occurs when ys ≤ ε.

The distribution function in GOCAP receives the value of the control parame-
ter X and sends restriction levels πiX to the restrictors. Our algorithm assumes
that the sources know the values of the πi, in which case they only need the
value of ys (= 1/X) to compute the restriction level. The distribution function
is then performed by the aggregation sub-system sending the value of ys to all
sources. The effect of the aggregation component on primal variables is to com-
pute xa =

∑
i∈I xi and send this to the server. In a deployment of GOCAP this

operation is implemented in the data path of the application, and by the server
measuring the received rate (or aggregate load).

The restrictor function in GOCAP is implemented by means of a leaky bucket
with a variable maximum leak rate r. If traffic arrives at a constant rate d, the
leaky bucket will let traffic through at a rate x = min{d, r}. In Monitoring mode,
the restrictors are switched off. In Closed-Loop mode, the leaky bucket rates are
set to values ri = πiX = πi/ya, thus implementing the primal part of (16).

Since GOCAP’s original conception, its functionality has been extended
slightly. Streams now may have guaranteed service rates si and any spare pro-
cessing capacity is allocated proportionally using weights πi. The leak rates are
thus set to ri = si + πi/ya.

5 Conclusion

We have presented the design of an overload control protocol from an optimi-
sation perspective, identifying three stages in the design process. In the first
stage, a convex optimisation problem or, more generally, a convex-concave La-
grangian, is specified. In the second stage the corresponding saddle point problem
is decomposed into a number of smaller problems. Finally, adaptation rules are



Optimisation-Based Overload Control 167

specified, determining how each subsystem responds to changes in its environ-
ment. We have discussed how various design choices can be made at each stage.
We highlighted the component graph representation of the Lagrangian as a tool
to visualise decomposition options and to expose communication requirements
associated with each decomposition.

The three design stages are not completely independent. Convexity of the
optimisation problem specified in the first stage makes it possible to establish
convergence of the adaptation rules described in the third stage. Convexity is not
sufficient though, as the naive algorithm in Section 3 illustrated. To overcome
this problem we have exposed a further aspect of the design space, whereby
each subsystem can make use of a local model of its environment. This strategy
applied to the overload control problem successfully reproduced the main aspects
of GOCAP, which would have remained outside the scope of a more conventional
optimisation decomposition approach.

We are currently studying generalisations of the overload control problem,
where requests are routed through a network of servers. Here, complex inter-
actions arise between the routing mechanism and different instantiations of the
overload control protocol. More sophisticated models of the environment are
required to obtain fast convergence in this setting. The convergence proof for
GOCAP, given in [1], does not apply in the server network scenario, but we are
exploring more powerful and more generic convergence proof techniques.

The optimisation problem at the heart of our design process only captures
the steady state behaviour of the protocol. We are currently exploring ways in
which problem formulations can be extended to also capture requirements and
trade-offs for the transient behaviour.
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Abstract. Many network control problems can be formulated and stud-
ied using the machinery of optimisation theory and Lagrange duality. The
goal of the control process is to find the saddle point of the Lagrangian.
We present a stability result for a class of dynamic processes for this
problem. Our formulation automatically derives a Lyapunov function
from the form of the dynamic equations. We show how several stability
results from the literature of distributed flow control in networks fit into
this formalism.
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1 Introduction

A strong and growing theme in the design and analysis of network control sys-
tems is to state the control objectives in terms of optimisation theory, and then
to present the network dynamics (or protocol behaviour) as a process that seeks
a solution of this optimisation problem [1]. Flow control algorithms, includ-
ing TCP, have been extensively analysed through various utility maximisation
problems, as has power control in mobile radio systems. Routing also yields to
a similar treatment though typically expressed as cost minimisation rather than
utility maximisation.

The optimisation approach has some very attractive features. It encourages a
‘separation of concerns’ between the statement of the network objectives and the
process by which it achieves those objectives. It provides a notion of decomposi-
tion, whereby the system problem is broken down into sub-problems that must
be solved by the local subsystems or agents. This in turn leads to distributed
algorithms, and allows the design space of these algorithms to be more thor-
oughly and systematically explored. It also allows for composition. For example,
it is possible to combine separate problems, such as routing and rate control,
into a single joint problem. Optimisation theory also points to the importance
of convexity as a structural property of problems that can be solved by effective
distributed algorithms.

A central concern in this methodology is that the distributed algorithm or
protocol should converge to the solution of the optimisation problem. Conver-
gence, or stability, is also central from the viewpoint of control theory. Conver-
gence criteria can appear quite different (and complicated) according to whether
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they assume continuous processes or discrete processes (either over time or over
state-space), whether they allow for communication delay or capacity limits,
whether they apply to linear or nonlinear systems, and whether they consider
local or global stability. In the context of optimisation, convergence has been
studied through gradient descent arguments, a passivity framework [2], local lin-
ear approximations, use of the frequency domain [3], and also, commonly, by
concocting a Lyapunov function for the particular algorithm under discussion.
Framing convergence criteria for solving optimisation problems, and rationalising
and relating different approaches is an active area of research.

The purpose of this paper is to present a class of continuous (nonlinear) dy-
namic equations which we prove come equipped automatically with a Lyapunov
function which ensures global convergence. The proof brings together the opti-
misation problem, the algorithm and a corresponding Lyapunov function into
one combined package. This not only offers potential for labour saving over an
approach in which these are motivated separately, but also offers useful insight
and understanding of the convergence conditions. Another attractive feature is
that it applies directly to a Lagrangian setting where equal status is accorded
to primal and dual variables, and we can naturally derive joint primal-dual al-
gorithms. We show how our result captures some of the models of dynamics
presented in the literature on flow control in congested networks.

2 The Lagrangian Approach

Although network control problems are often first expressed as a constrained
optimisation problem (utility maximisation or cost minimisation), it is common
to then combine the objective and constraints through a Lagrangian formula-
tion. The Lagrangian formulation also seems to help in decomposing a global
joint optimisation problem into processes running locally in the network. We are
seeking to give the Lagrangian function primary role, emphasising the equal sta-
tus of primal and dual variables. Elsewhere we have developed a graphical syntax
and a variety of idioms which exploit the structure of the Lagrangian to allow
control processes to be clearly expressed [4]. These techniques then allow these
formulations to be manipulated and explored until an efficient decomposition
and associated dynamics can be chosen and refined towards implementation.

Our model of the control problem will be a general Lagrangian system, in
which the global objective is to find a saddle point, by solving

max
x

min
y

L(x,y)

over its convex domain E ⊆ R
n × R

m. We assume L is strictly concave in its
primal variable x ∈ R

n and convex in its dual variable y ∈ R
m.

Typically the primal variables represent the controlled parameters of our
system (for example, flow values or rates) while the dual variables arise as La-
grange multipliers associated with constraints, and are interpreted as, for exam-
ple, prices (in flow control) or distance labels (in routing).
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3 Dynamics and Lyapunov Convergence

We now define the trajectories that will take our system through its state space
to its equilibrium. These are derived from two functions, F (x) ∈ R and G(y) ∈ R

from which we will also derive the Lyapunov function to prove convergence. Our
proof will rely fundamentally on the Legendre transform of these functions. Both
F and G and their Legendre transforms are analogous to energy in electrical
circuits, and as a convenience we will refer to all of these as “energy” functions.

We assume F and G are differentiable throughout E. We require some addi-
tional technical conditions to be sure that their Legendre transforms exist. Using
definitions from Rockafeller [5] Theorem 26.5, we require them to be of Legendre
type. We say a function F is of concave Legendre type if (writing C = int(dom F )
where int(S) denotes the interior of the set S and dom(F ) the domain of the
function F )

1. F is closed and strictly concave in C,
2. F is differentiable throughout C,
3. limi→∞ |∇F (xi)| =∞ whenever xi is a sequence in C converging to a bound-

ary point of C.

These somewhat technical conditions ensure that the Legendre transform is well-
defined, differentiable and strictly concave, and are usually straightforward; for
example they are trivial for strictly concave/convex functions that are differen-
tiable everywhere. For completeness, we say that G is of convex Legendre type
if −G is of concave Legendre type.

We now present our main result

Theorem 1. Given a strictly concave convex Lagrangian L : E �→ R with its
unique saddle point in its convex domain E and primal and dual energy functions
F and G of concave and convex Legendre type respectively and with int(dom F )×
int(dom G) ⊇ E, then trajectories with

− d

dt
∇F ∈ ∂xL − d

dt
∇G ∈ ∂yL (1)

are globally asymptotically stable.

Here ∂xL is the sub-gradient of L with respect to primal variables only, ∂yL
the sub-gradient with respect to dual variables only. Definitions of these sub-
gradients are provided later in (4) and (5). Our proof of global asymptotic sta-
bility will be by a Lyapunov function method (see e.g. [6]).

Note that these conditions on the trajectories of the dynamical system do
not necessarily imply that such trajectories exist or are unique. In fact, we will
describe an example in which the trajectories are not uniquely defined by these
conditions; instead any of a set of possible trajectories are stable. However,
simple sufficient conditions for the trajectories to be uniquely defined can be
straightforwardly found. For example, assume first that L is differentiable and
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F , G are twice differentiable. Then∇2F and∇2G are negative or positive definite
and so invertible and our trajectories are defined by

ẋ = −(∇2F )−1∇xL ẏ = −(∇2G)−1∇yL (2)

which have unique solutions as long as (∇2F )−1∇xL and (∇2G)−1∇yL are Lip-
schitz.

3.1 Proof: Equilibrium and Zero Energy at Origin

We first prove convergence for the special case where the saddle point of the
Lagrangian is at the origin, (0,0). The saddle point condition states that

L(x,0) ≤ L(0,0) ≤ L(0,y) (3)

for all (x, 0) and (0,y) in E. The Lagrangian is assumed to be concave-convex,
so, from [5] (chapter 23), we can define the subgradients, ∂xL and ∂yL, to be the
maximal sets such that

∀r ∈ ∂xL(x1,y1) L(x2,y1)− L(x1,y1) ≤ (x2 − x1).r (4)
∀s ∈ ∂yL(x1,y1) L(x1,y2)− L(x1,y1) ≥ (y2 − y1).s (5)

We assume that the energy function F (x) is negative with maximum value 0
at x = 0, and G(y) is positive with minimum value 0 at y = 0, so

F (0) = 0 G(0) = 0 (6)
∇F (0) = 0 ∇G(0) = 0 (7)

F (x) ≤ 0 G(y) ≥ 0 (8)

We will remove these restrictions in the next section so the following proof is
essentially without loss of generality.

In constructing a Lyapunov function for (1) we will require the Legendre trans-
forms of F and G, for which we follow a definition provided by [5] (Chapter 26).
First note that ∇F and ∇G provide one-to-one mappings from C = int(dom F )
and D = int(dom G) to their conjugate spaces C = ∇F (C) and D = ∇G(D).
Introduce two auxiliary variables p ∈ C and q ∈ D such that

p(x) = ∇F (x) q(y) = ∇G(y) (9)

x(p) = (∇F )−1(p) y(q) = (∇G)−1(q) (10)

where (∇F )−1 and (∇G)−1 are the inverses of ∇F and ∇G respectively. Then
the Legendre transforms, F and G, of F and G are defined as

F (p) = x(p) · p− F (x(p)) G(q) = y(q) · q−G(y(q)) (11)

We know from [5] that F (p) and G(q) are also of Legendre type. Moreover, from
[5] Theorem 26.5

(∇F )−1 = ∇F (∇G)−1 = ∇G (12)
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Also from [5] is Theorem 26.4 which states that F is the concave conjugate of
F and G the convex conjugate of G, and so

F (p) = min
x

(
x · p− F (x)

)
G(q) = max

y

(
y · q−G(y)

)
(13)

The functions F and G obey

F (0) = 0 G(0) = 0 (14)

∇F (0) = 0 ∇G(0) = 0 (15)

F (p) ≤ 0 G(q) ≥ 0 (16)

To show (15), invert (7) to give 0 = (∇F )−1(0), then use (12). To show (14),
substitute p = 0 into (11), noting also that x(0) = ∇F (0) = 0 from (15). To
show (16), we have from (13) that F (p) ≤ 0 ·p−F (0) = 0, and similarly for G.
We will also need, using (12) and (9)

∇F (p(x)) = x ∇G(q(y)) = y (17)

We are now ready to demonstrate the existence of a Lyapunov function, φ,
defined as follows

φ(x,y) = G(q(y)) − F (p(x))

Firstly φ(0,0) = 0 from (14). Also from (16), φ is positive and if φ(x,y) = 0
then F (p) = 0 hence x = 0 and G(q) = 0 hence y = 0. Finally we have

d

dt
φ(x,y) =

d

dt
G(q(y)) − d

dt
F (p(x))

= ∇G(q(y)) · d

dt
(q(y)) −∇F (p(x)) · d

dt
(p(x)) by chain rule

= ∇G(q(y)) · d

dt
(∇G(y)) −∇F (p(x)) · d

dt
(∇F (x)) by (9)

= y · d

dt
(∇G(y)) − x · d

dt
(∇F (x)) by (17)

= −y · s + x · r
for some s ∈ ∂yL(x,y) and r ∈ ∂xL(x,y) by (1)

≤ (
L(x,0)− L(x,y)

) − (
L(0,y)− L(x,y)

)
by (4), (5)

= L(x,0)− L(0,y)
≤ 0 by (3)

Furthermore if dφ/dt is to be zero, then from (3), strictness of L in x implies
x = 0, and similarly for y. So the proposed Lyapunov function reduces along
trajectories satisfying (1) and is only zero at the equilibrium. This proves asymp-
totic stability.

To obtain global asymptotic stability, we need a little more; that the level
sets of φ are bounded. From [5] Corollary 14.2.2, this is so if and only if 0 ∈
int(dom φ), for φ the convex conjugate of φ. But, we know that 0 is in E and
hence in C ×D and so in the interior of domF × dom G. This is the domain of
φ, giving 0 ∈ int(dom φ) as required.
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3.2 Proof: General Equilibrium Point

To prove stability about a general point we can shift the origin of the energy
functions and prove that these shifted functions define a Lyapunov function of
the original trajectories. Thus L in Theorem 1 is assumed to be strictly convex
concave, but with arbitrary saddle point. The energy functions F and G are
assumed concave and convex respectively, but without the restrictions on the
location of their stationary points, or their value at the stationary points.

We introduce a new Lagrangian L′, and new energy functions F ′ and G′

defined as follows

L′(x,y) = L(x + x∗,y + y∗) (18)
F ′(x) = F (x + x∗)− F (x∗)−∇F (x∗) · x (19)
G′(y) = G(y + y∗)−G(y∗)−∇G(y∗) · y (20)

where (x∗,y∗) is, for the moment, some arbitrary reference point. We require F
and G to be differentiable at (x∗,y∗) but this is automatic if (x∗,y∗) ∈ E. Now,

d

dt

(∇F ′(x)
)

=
d

dt

(∇F (x + x∗)−∇F (x∗)
)

=
d

dt
∇F (x + x∗)

∂xL′(x) = ∂xL(x + x∗,y + y∗)

and so the conditions on the trajectories (1) are invariant with respect to this
type of transformation.

The functions F ′ and G′ fulfill the energy function requirements (14)-(15)
since they are respectively concave and convex, and

F ′(0) = F (x∗)− F (x∗) = 0, ∇F ′(0) = ∇F (x∗)−∇F (x∗) = 0 (21)

and similarly for G′.
Finally, by choosing (x∗,y∗) to be the saddle point of L, the new Lagrangian

L′ satisfies (3)-(5), so all of the conditions of the previous section are met, and
we know that a Lyapunov function exists that ensures the trajectories converge
to the saddle point.

4 Applications to Network Control

We start by presenting a standard formulation of the network congestion control
problem that has been widely studied in the literature (for example [7]). We will
then show how our techniques can reproduce several algorithms that have been
proposed for solving this problem.

Consider a set of n users who are allocated rates xi by the network subject
to capacity constraints Kj at each of m resources. This leads to a Lagrangian
formulation

L(x,y) =
n∑

i=1

Ui(xi) +
m∑

j=1

yj

(
Kj −

∑

l∈j

xl

)
(22)
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with the constraint that x, y ≥ 0. Here we abuse notation and write l ∈ j to
mean values of l ≤ n such that user l is using resource j. The strictly concave
functions Ui represent the utilities for rates xi that the n users of the system
receive. The dual variables yj are the Lagrange multipliers associated with the
capacity constraints in the optimisation problem.

Note that this Lagrangian is convex but not strictly convex in its dual vari-
ables. This leads to problems in the dynamics; typically it is not possible to con-
trol the system to avoid overload (congestion). Thus it is conventional to add a
barrier function to convexify the Lagrangian. This can be considered to be a way
of improving the network control. It can also be considered to represent some real
costs that arise as the network approaches capacity (e.g. delay or packet loss).

With this modification the Lagrangian becomes:

L(x,y) =
n∑

i=1

Ui(xi) +
m∑

j=1

(
yj

(
Kj −

∑

l∈j

xl

)− πj(yj)
)

(23)

where the functions πj(yj) are concave and positive. This Lagrangian can be
made as close as we require to the original one by suitable choice of the barrier
functions, for example by using πj(y) = ε log(y) and letting ε tend to 0. However,
it may be more realistic for πj to remain non-negligible. Then it moves the
equilibrium away from overload until the costs of near-congestion are balanced
by the loss of utility from the reduced rate.

An optimisation problem capturing the tradeoff between maximising utility
while minimising the cost of the congestion can be recovered from (23) by per-
forming the minimisation over yj given by

min
yj

m∑

j=1

(
yj(Kj −Xj)− πj(yj)

)
, Xj =

∑

l∈j

xl (24)

This is the Legendre transform of πK
j (yj) = Kjyj−πj(yj), with Xj =

∑
l∈j xl the

dual variable of yj. Writing this transform as πK
j (Xj), the desired optimisation

problem becomes

max
xj

n∑

i=1

Ui(xi) +
m∑

j=1

πK
j

(∑

l∈j

xl

)
(25)

This compares directly with the formulation in [7] (where πK
j (X) =

∫ X

0 pj(y)dy).
The solution of the above optimisation and Lagrangian problems prescribe the

required static configuration of the network. To find a distributed algorithm that
the network can use to find this solution, various dynamic equations have been
formulated over this same Lagrangian. We now demonstrate how some of these
can be represented in our approach by choosing appropriate energy functions for
both the primal and dual variables.

Example 1. For our first example we cast the dynamics discussed in [7] into
the form prescribed in (1). There Kelly chooses Ui(xi) = wi log(xi). To obtain
his dynamics we need to choose



Lyapunov Convergence for Lagrangian Models of Network Control 175

F (x) = − 1
κ

n∑

i=1

log(xi) G(y) =
1
2ν

m∑

j=1

y2
j (26)

Then (1) applied to the Lagrangian (23) gives (since L is differentiable)

−1
κxi

ẋi = −wi/xi +
∑

k∈i

yk ⇒ ẋi = κ
(
wi − xi

∑

k∈i

yk

)
(27)

As before we abuse notation here and write k ∈ i for values of k ≤ m such
that resource k is used by user i. This is the primal dynamics specified in [7]
(equation 5).

For the dual dynamics we obtain

1
ν

ẏj = −(
Kj −

∑

l∈j

xl − π′
j(yj)

) ⇒ ẏj = ν
(∑

l∈j

xl −
(
Kj − π′

j(yj)
))

(28)

which is equivalent to the dual dynamics in [7] (equation 9), where they write
qj(yj) for our Kj − π′

j(yj).
Having obtained dynamic equations (27) and (28) as instances of (1), we know

automatically from Theorem 1 that a joint primal-dual algorithm with these
dynamics is Lyapunov stable. In this respect we have a generalisation of [7]. To
recover the primal-only and dual-only algorithms of [7] we use the fact that the
system remains stable for arbitrary values of the ratio κ : ν. In particular, in the
limit as either the primal or dual dynamics become much faster than the other,
we can consider the fast part of the system to be always at equilibrium.

Accordingly, to obtain the primal dynamics we consider the equilibrium of
(28). Again using Xj =

∑
l∈j xl, the equilibrium condition can be written as

Xj =
∂

∂yj

(
Kjyj − πj(yj)

)
=

∂

∂yj
πK

j (yj) ⇒ yj =
∂

∂Xj
πK

j (Xj) (29)

using the properties of the Legendre transform (as also used in (12)) to invert.
In the notation of [7] this becomes yj = pj(

∑
l∈j xl) as required.

Alternatively, to obtain only dual dynamics we use the equilibrium condition
of (27) to give xi = wi/

∑
j∈i yj which is equation 10 in [7], also as required.

Note here how our general approach automatically implies the stability of
the primal-dual, primal-only, or dual-only algorithms, directly from the dynamic
equations, all without the need to find separately motivated Lyapunov functions.

Example 2. Our second example considers dynamics presented in [8]. Here we
retain the general concave utility function in the Lagrangian (23), and define
energy functions as follows

F (x) =
n∑

i=1

(−1/κi)
∫ xi

0

Ui(x) dx G(y) =
m∑

j=1

1
2νj

y2
j (30)
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Then we obtain dynamics

ẋi = κi

(
1− 1

U ′
i(xi)

∑

k∈i

yk

)
ẏj = νj

(
Kj −

∑

l∈j

xl − π′
j(yj)

)
(31)

If the Ui are strictly increasing functions (a reasonable assumption for flow util-
ity) then F is concave, and our result demonstrates convergence of a combined
primal-dual algorithm. To recover the primal-only dynamics in [8] we assume
the dual variables (or shadow prices) reach their equilibrium quickly, and substi-
tute (29) into (31). The dual-only dynamics in [8] discards the barrier functions
πj(yj), and assumes the flows instantaneously reach an equilibrium with respect
to the dual variable.

Conditional on the assumption that the energy function F (x) is built from the
utility function according to (30) it is possible to reverse the above derivation:
to start with a flow dynamics of the form in (31) and to infer the correspond-
ing utility function. This line of argument has been used to associate utility
functions with different versions of TCP flow control. For example, under those
assumptions, the flow dynamics for TCP-Reno corresponds to a utility function
U(x) = (

√
2/τ) arctan(xτ/

√
2) [8].

Example 3. Finally we can apply our approach to the formulation in [9], which
uses the (non-strict) Lagrangian in (22). We choose strictly concave (resp. con-
vex) twice differentiable energy functions

F (x) =
n∑

i=1

fi(xi) G(y) =
m∑

j=1

gj(yj) (32)

which, for xi > 0, yj > 0, give dynamics as in [9]:

ẋi =
−1

f ′′
i (xi)

(
U ′

i(xi)−
∑

k∈i

yk

)
ẏj =

1
g′′j (yj)

(∑

l∈j

xl −Kj

)
(33)

However, under the assumption that the Ui (and hence also the Lagrangian)
are differentiable at xi = 0, the dynamics are extended in [9] onto the boundary
xi = 0 and yi = 0 by restricting the terms on the right hand sides of (33) to be
non-negative there.

These potentially awkward cases are easily handled by the use of the sub-
gradients in Theorem 1. For xi = 0 the primal sub-gradient is defined as

r ∈ ∂xL(x,y)⇒ ri ≥ ∂L(x,y)
∂xi

∣∣∣
xi=0

= U ′
i(0)−

∑

k∈i

yk (34)

This inequality is straightforwardly satisfied by the dynamics in [9], which can
be interpreted as choosing ri = U ′

i(0) −∑
k∈i yk if this is greater than 0 and

ri = 0 otherwise. A similar argument holds for yj .
In this example stability is not immediate because L(x,y) is not strict in y.

However, by LaSalle’s theorem [6] the Lyapunov function φ ensures convergence
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to a set in which φ̇ = 0 and, as before, strictness in x requires x to take its
equilibrium value there. The invariant set for which φ̇ = 0 then requires ẋi = 0.
If solving (33) for ẋi = 0 gives unique solutions for yj, then stability is proven.
This is assured by the full rank condition assumed in [9].

5 Conclusion

We have identified a general approach to specifying the dynamics of a distributed
optimisation which comes with an implicit convergence result. This form offers
quite a wide design space, within which further results, intuition (and optimisa-
tions) could be developed. In particular, it allows primal and dual algorithms to
be combined easily, and boundary conditions to be handled straightforwardly,
extending other results in the literature.

Our assumptions concerning F , G and L lead to a particularly direct and
interesting stability proof, in which the transformation (19) and (20) is key to
reusing the concave and convex functions appearing in the dynamic equations to
construct the Lyapunov function. Analogous results might be similarly derived
for non-differentiable concave-convex functions F , G, and for processes with
discrete time steps. It also appears that extensions are possible in which the
strictness of L can be relaxed in some of its variables.
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Abstract. In this paper we propose NCRS, a Network Computational Resource 
Sharing grid based on network RAM. In NCRS, the computing node regards the 
free memory of other nodes in networks as a complement of local memory and 
uses it to store the large amount of intermediate data during computation. When 
the remote data is required, rather than blocks and gets it from remote nodes (or 
local disks), the computing node sends the related instructions to the remote 
nodes where the data locates. We refer to the memory on the remote nodes in 
networks as Network Intelligent Memory (NIM). NIM carries out the received 
instructions, and by this means the computing node reduces the page-swaps 
with local disks and the instructions locally carried out. 

Keywords: NCRS; NIM; Pseudo memory; Speculative execution; Instruction 
analyses. 

1   Introduction 

In order to exploit the vast wide-area distributed memory resources, we introduced 
RAM-Grid [1] in our previous work, which provides a universal memory service for 
other nodes on the Internet. RAM-Grid swaps obsolete local memory pages to remote 
memory service instead of local disk, which may lead a performance boost for mem-
ory-intensive applications when local physical memory is inadequate. 

However, further experiments were made and results showed that RAM-Grid could 
not adapt to computational-intensive applications with very frequent page-swaps [1]. 
We analyze the results and find that RAM-Grid and other proposals for memory shar-
ing [2,3] can ONLY reduce the overhead of each page-fault during the process of 
computation and can NOT reduce the total number of page-faults at all. 

By extending the concept of RAM-Grid, in this paper we present NCRS, a Net-
work Computational Resource Sharing grid. As in RAM-Grid, in NCRS the comput-
ing node regards the free memory of other nodes in networks as a complement of 
local memory and uses it to store the large amount of intermediate data during  
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computation. However, in NCRS when page-fault occurs, rather than blocks and gets 
pages back from remote nodes as in RAM-Grid, the computing node sends the related 
instructions (r-instructions for short) to the remote nodes where the data locates. We 
refer to the memory on the remote nodes in networks as Network Intelligent Memory 
(NIM). NIM carries out the r-instructions for the computing node and returns the 
results, while the local computing node can jump over them and carries out the fol-
lowing instructions simultaneously. Like local page-swap schemes, all pages swapped 
to NIM also have a local-disk copy. When page-fault occurs, the local copy will be 
fetched from disk to memory simultaneously with remote execution, and the  
r-instructions will be executed locally if the remote result doesn’t come back yet when 
the local copy has swapped-in to local memory. By this means we ensure that at worst 
NCRS has the same performance as local page-swap schemes for computational-
intensive nodes. 

NCRS reduces the overhead of each page-fault as in RAM-Grid, and the number of 
page-faults as well as the number of instructions carried out locally. 

2   Network Intelligent Memory 

We extend the concept of RAM-Grid by regarding the free memory in other nodes on 
the Internet as fast memory resources with intelligence (execution ability), and then 
the network memory has the characteristics as follows: 

(1) The network memory in other nodes has the computing ability and can carry 
out instructions. For example, a local instruction such as “add eax, ebx” can add the 
data of eax register to that of the ebx register and save the result in eax register. If we 
can send an instruction similar to that of “add memA, memB” (both memA and 
memB are the memory addresses of the remote node) to the idle nodes where the data 
locates, then the idle node can add the data of memA to that of memB automatically. 

(2) The speed of network memory is close to that of the local memory, while the 
total capacity is close to infinity. The usual latency of network ranges from hundreds 
of ms to several seconds [4], and if we select memory services carefully to control the 
latency less than one ms, then we can improve the system performance greatly. 

We call these network memory resources Network Intelligent Memory (NIM), 
which are provided by the idle nodes on the Internet and can partly replace the local 
memory. Therefore, computing nodes can not only regard NIM as a complement to 
local physical memory and store the initial and intermediate data in it, but also send 
the related instructions to NIM. NIM carries out these instructions instead of the com-
puting node and returns the results, while the local computing node can jump over 
these instructions and carries out the following instructions simultaneously until 
meets instructions that need the results of the remote execution. Compared with 
RAM-Grid, NIM reduces the number of the instructions carried out at the local com-
puting node and the number of page-faults in the computational-intensive applications. 

The physical memory is not hot-pluggable in today’s computer architectures, and 
there are no operating systems supporting dynamic changes of memory capacity. 
However, the total capacity of NIM that can be used by the computing node is 
changeable. To solve this problem, we propose a new policy named Pseudo Memory 
Policy (PMP) for memory management in NCRS. 
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Fig. 1. Pseudo Memory Policy 

As shown in figure 1 (a), during start-up of the OS, PSP let the OS believe that the 
computing node has huge memory capacity (closed down by the ellipse) with only 
“local memory capacity” free, and all other part in the ellipse is used. When using 
NIM, as shown in figure 1 (b), PSP inform the OS that some memory covered by 
“NIM” circle are freed and there are “local memory capacity” + “NIM” of memory 
that can be used by the OS, while the total memory capacity seen by the OS remains 
the same (closed down by the ellipse). As shown in figure 2, by this means PSP 
“cheats” the OS of the computing node and realizes the universal image of local 
memory and network memory. 

 

Fig. 2. Image of local and network memory 

Because of the relativity and complexity of instructions, the computing node can’t 
send all instructions to NIM for execution. It is complicated to decide which to send, 
when to send, and what to do after sending these instructions. 

The key problem of instruction analyses is to analyze the operation characteristics 
of the instructions, the location of the operands and the correlation between the in-
structions being analyzed and the next ones. On one hand, because of the uncertainty 
of data location and program behavior, it’s impossible to completely decide the loca-
tion of the operands and the relationship of the instructions during compile phase; on 
the other hand, for efficiency it makes no sense to decide whether to carry out at NIM 
(where the data locates) completely at runtime. Therefore, considering both accuracy 
and efficiency of the decision, we need to combine compiling analyses and executing 
analyses as follows. 

(1) The computing node maintains a pattern table to record the remote-executable 
instruction patterns. We discuss these patterns in the next sub-section. 

(2) During the compile phase, the computing node matches patterns with the in-
structions and analyzes which instructions may be sent to NIM. 
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(3) When page-faults occurs at runtime, if the data locates in local page-swap area 
in disk the computing node swaps in the corresponding pages as usual, else the data 
must locates in one or more NIMs providing page services [1] for it. It checks 
whether the following instructions at the page-fault point are in the pattern matching 
records. Turn to step (6) if the matching fails. 

(4) The computing node decides whether to send the matched n instructions to 
NIM according to the following conditions. 

• The location of all data corresponding to the matched n instructions. 
• Whether the instructions next to the matched n instructions are correlated with 

the execution result of the n ones. 

Turn to step (6) if the computing node decides not to send. 
(5) The computing node sends out the n instructions to the NIM where the data  

locates and carries out the instructions next to the n ones until meeting the instruction 
that needs the execution result at NIM. 

(6) The computing node waits until the needed data is fetched back from the NIM 
where the data locates. 

The remote-executable instruction patterns are important to NCRS. Currently we 
analyze the most common patterns as shown in figure 3 and we will study and define 
more complicated patterns for NCRS in our future work. 

 

Fig. 3. Remote-executable instruction patterns 

Pattern 1: if the purpose of the instructions is to add one value at address b to an-
other at address a, and both values and the result are stored at the same NIM (remote 
node), then the computing node may send the instructions to the NIM. 

Pattern 2: if the purpose of the instructions is to add a constant to the value at ad-
dress a, and both the value at address a and the result are stored at the same NIM 
(remote node), then the computing node may send the instructions and the constant to 
the NIM. 

Pattern 3: if the purpose of the instructions is to exchange one value at address b 
and another at address a, and both values are stored at the same NIM (remote node), 
then the computing node may send the instructions to the NIM. 
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Pattern 4: if the purpose of the instructions is to add one value at address c to an-
other at address a, and the value at address a and the result are stored at the same NIM 
(remote node), the value at address c is at the computing node (local node), then the 
computing node may send the instructions and the value at address c to the NIM. 

Pattern 5: if the instructions are a loop and the correlated operands in the loop are 
at the same NIM, then the computing node may send the instructions to the NIM. 

NIM carries out the r-instructions for the computing node and returns the results, 
while the local computing node can jump over them and carries out the following 
instructions speculatively. The speculative execution relies on two facts. First, pro-
grams can correctly predict the result of many operations such as loop test and consis-
tency checks. Second, the latency of checkpoints is much less than network RTT to 
NIM, so substantial work can be done while waiting for the remote-execute results. 

 

Fig. 4. Speculative execution 

As shown in figure 4, if the following instructions need the results of the remote 
execution, the local computing node predicts the result of the r-instructions, check-
points the state of current process (from time A to time B) and speculatively continue 
the execution of the following instructions based on the predicted result (from time B 
to time E).  

The speculative execution blocks (from time E to time F) if it will influence others, 
such as invoking other processes or interacting with human users, until the specula-
tions prove to be correct (time F). 

When the result returns (time F), if the prediction of the remote execution results is 
correct, the checkpoint is discarded; otherwise the process state is restored to the 
checkpoint and the following instructions after the r-instructions are re-executed.  

Like local page-swap schemes, all pages swapped to NIM also have a local-disk 
copy. When page-fault occurs, the local copy will be fetched from disk to memory 
simultaneously with remote execution, and the r-instructions will be executed locally 
if the remote result doesn’t come back yet when the local copy has swapped-in to 
local memory. By this means we ensure that at worst NCRS has the same perform-
ance as local page-swap schemes for computational-intensive nodes. 

Detailed speculative execution implementation is one of our future work. 
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3   Analysis and Evaluation 

The ultimate goal of NCRS is to construct a computational resource sharing system. 
However, because the network latency and bandwidth vary greatly, NCRS works 
better than local execution only under some conditions. In the following analyses we 
assume the memory demand of computation is much higher than the local memory 
capacity. Note that in this section we omit the speculative execution introduced in 
section 2.3 due to lack of methods to trace the speculation accuracy, which will be 
studied in our future work. 

In traditional local computing environments, when the computing node lacks mem-
ory greatly, a mass of page swap operations occur and take much more time than 
execution of instructions, so we can ignore the impact of the number of instructions 
actually executed. When performing a page swap operation with n successive pages, 
the latency is given by formula (1): 

( 1) p
D s L W

d

S
Latency T T n T n

B
= + + − × + ×  (1) 

In formula (1), TS denotes the average seek time, TL denotes the average latency 
time, TW is the average waiting time between two successive readings, SP is the page 
size, and Bd is the average disk bandwidth. 

In NCRS environments, there are two kinds of latency. If the local instructions fol-
lowing the remote-executing ones don’t need the remote-executing result, the latency 
is the time to send instructions and could be ignored compared to IO latency. Other-
wise the local instructions have to wait the remote-executing result and the latency is 
given by formula (2): 

2 /N U RTT remote exec result NLatency T T T S B−= × + + +  (2) 

In formula (2), Tu is the start-up time, TRTT is the round trip time, Tremote-exec is the 
remote execution time, Sresult is the remote result size, and BN is the network band-
width. 

We trace an actual meteorological application [8] and modify the Linux kernel 2.4 
to record its page swap history, including swap time (in microseconds), swap type 
(swap in or swap out), and the page location in local disk. During the monitoring, the 
standard setting is a PC with Intel Pentium 2.4GHz processor and 1GB physical mem-
ory, the operating system is RedHat AS 3 Linux and totally 523920 swaps is  
recorded. To simplify the simulation, we assume EISP can always find enough com-
puting service providers for the consumer, and ignore the circumstances that the pro-
vider withdraws its services in use. 

We build the simulator for NCRS with 1000 different nodes based on our previous 
work [1]. For local computing simulation, the disk parameters are: TS=4.9ms, 
TL=3.0ms, TW=0.2ms, Sp=4KB, and Bd=80MB/s.  

For NCRS simulation, the amount of physical memory of all nodes is uniformly 
distributed between 128 MB and 1024 MB. The memory capacity of the computing 
node is 240MB. The parameters in formula (2) are: Tu=5ms, TRTT =2ms, BN=2MB, 
and Tremote-exec is equal to the local execution time. For simplicity we assume 10% of  
the local instructions following the remote-executing ones don’t need the  
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remote-executing result, other 90% instructions need to wait and Sresult (the size of 
remote executing result to send back to the local computing node) is one half the 
size of data sent to NIM. 

As shown in figure 5, the performance of NCRS is much better than that of RAM-
Grid and the disk IO, and the execution time of NCRS goes down slowly as the 
bandwidth increases. 

       

Fig. 5. Execution time of NIM-Grid, RAM Grid and local computing pattern 

4   Conclusion 

In this paper we propose a network RAM-based computational resource sharing grid, 
NCRS. In NCRS, the computing node regards the free memory of other nodes in 
networks (NIM) as a complement of local memory and uses it to store the large mount 
of intermediate data. During the process of computation the computing node sends the 
related instructions to NIM and NIM executes the instructions instead of it. 
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Abstract. Optical Burst Switching proposes a future-proof alternative to the cur-
rent electronic switching in the backbone. The involved optical buffers are imple-
mented with a set of Fiber Delay Lines, and suffer serious performance loss,
when compared to RAM. Various existing models trace this loss, but either lack
generality, accuracy, or effectiveness.

The optical buffer model we constructed is valid for general line lengths and
burst sizes. An effective approach allowed to strongly reduce the solution’s com-
plexity, while remaining exact. This document presents the key formulas and per-
formance graphs. The obtained model serves as a basic optimization tool, yielding
results fast.

Keywords: OBS, optical buffer, FDL, fiber delay lines, discrete-time optimiza-
tion.

1 Introduction

In a decade where bandwidth-consuming web services (with YouTube.com as a fash-
ionable example) and peer-to-peer data exchange are working their way into everyday
life, backbone infrastructure needs to be prepared for this ever-increasing bandwidth
demand. Although data packets travel through the backbone in the form of light, they
are still converted into electricity at every hop, in order to extract header information,
buffer them, convert them back to light and transmit them to the next hop. Since this
conversion is expected to be the bottleneck in the near future, the research community
proposes alternative switching approaches, such as Optical Burst Switching (OBS) [1]
and Optical Packet Switching (OPS) [2].

Just like conventional switches, optical switches need to resolve contention. Even
without internal blocking, this arises inevitably, whenever two or more bursts (or pack-
ets) head for the same output at the same time. In general, wavelength conversion and
buffering offer the most viable solutions to date.

Since light cannot be frozen, optical buffering is implemented by sending the bursts
through sufficiently long pieces of fiber, often referred to as Fiber Delay Lines (FDLs).
An optical buffer is thus a set of FDLs, each with different lengths. This way of im-
plementing, though implementable with off-the-shelf components, has two drawbacks
if compared to electronic RAM memory. On the one hand, optical buffers cannot re-
alize all possible delays, which results in performance loss. Incoming bursts can only
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c© Springer-Verlag Berlin Heidelberg 2007



186 W. Rogiest et al.

undergo delays equal to the length of one of the lines. For this reason, some capacity
will be lost on the outgoing channel because, even when some bursts (or packets) are
present in the buffer, they may not be available yet for transmission. The ensuing pe-
riods during which the outgoing channel remains unused, despite it’s availability, are
referred to as voids. They account for additional waiting time for the burst, and thus
lead to increased loss. On the other hand, optical buffers have a large physical size.
For typical OBS specifications (10 Gbps link, 100 kbit burst sizes), it takes about 2 km
of fiber to apply a delay for the duration of a burst, and the physical size of a buffer
thus grows quickly with the number of fibers. As such, an optical buffer typically has
a smaller storage capacity than a RAM buffer, which leads to further increased loss.
Therefore, quantifying this loss by means of an analytic model, and tuning the design
parameters for optimal performance, are main questions in the ongoing research.

A prime contribution in the study of optical buffer performance, is [3]. There, and
in [4, 5], Callegati studied an optical buffer with fiber lengths that are a multiple of a
basic unit D, that is, 0, D, 2D, 3D, . . .(that is, equidistant line lengths). The type of
buffer he called a degenerate buffer, while for the basic unit D he coined the term
granularity. The analysis explored an approximation based on the iteration of a clas-
sic M/M/1/N buffer model, and yields approximate results for memoryless burst sizes.
Extending the analysis to general burst sizes, and improving accuracy, [6] presents an
accurate performance model for a degenerate buffer in discrete time, that is extended
to continuous time in [7]. Murata and his co-authors [8] extend the approach of Calle-
gati to multiwavelength systems, while in [9, 10], a method is provided to account for
non-equidistant FDL lengths, that are not necessarely a multiple of the granularity. This
approach is examined more thoroughly by Lambert and her co-authors in [11], and also,
alternatively, in [12].

While much of the previous work is approximate [3,8,6,7], here, exact performance
measures are obtained. The model we constructed yields exact formulas, that offer the
benefit of being valid for a broad range of parameter values at once. Like in [11], we
worked in a discrete-time setting, with arbitrary sets of FDLs, and made no restric-
tive assumptions on the burst size distribution. Main difference with [11] is that we
obtained a more effective modeling approach, by focusing on the waiting time only.
In [11], the analysis is based on the evolution of the scheduling horizon, and com-
putational complexity depends on the length of the longest delay line. By ruling out
the scheduling horizon as a measure, our model’s complexity is independent thereof,
and depends solely on the number of delay lines, which is small in all practical cases.
Our modeling thus allows to easily compute results for any burst size distribution, and
any size, and this also in the case of very long delay lines. Therefore, it allows to ap-
proximate the continuous-time case arbitrary close without augmenting the calculation
time.

In Sect. 2, we present the FDL buffer setting and modeling variables. The analysis
of this model will be given in Sect. 3, proposing a simple Markov chain, and show-
ing how to derive the waiting time and loss characteristics from this. Some numerical
examples follow in Sect. 4. The latter show how the optical buffer’s performance is
strongly impacted by the buffer size, in a way that depends much on the burst size
distribution.
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2 Stochastic Model

Here, we first focus on the FDL buffer setting, to then move to the assumptions of
the traffic model. Consequently, we look at the system equations, that are expressed in
terms of the waiting time of an arbitrary burst.

2.1 Optical Buffer Setting

The optical buffer under consideration is a set of N + 1 Fiber Delay Lines, one of them
with length ω0 = 0, and N lines with different lengths ωi, i = 1 . . .N . As the set of
lines are intented to resolve contention, it is necessary that contending bursts undergo
different delays. Therefore, a useful FDL set never contains the same length twice,
ωi �= ωj for i �=j . For notational convenience, we denote the set of FDL lengths as
Ω = {ω0, ω1, . . . ωN}, and we sort the line lenghts ascendingly, ω0 < ω1 < . . . < ωN .
Note that although a common choice is to choose equidistant lengths ( ωi = i × D,
i = 0 . . .N ), the analysis is done for arbitrary lengths.

This buffer is located at the output of a backbone switch, and is dedicated to a single
outgoing wavelength. We consider bursts arriving at the buffer randomly, and possibly
overlapping in time. Since there is only one wavelength to queue for, all overlap during
transmission should be prevented. By means of a switching matrix that allows to send
any burst to any of the N + 1 delay lines, buffer control exercises a FIFO (First-In-
First-Out) scheduling discipline, and sends every burst to a sufficiently long delay line,
so as not to overlap with the one-but-last burst. If such a (sufficiently long) delay line is
present, the burst is accepted and enters; if not, the burst is dropped. The periods during
which the system can accept any possibly arriving burst, are called available periods;
the periods during which the system drops arriving bursts are called unavailable periods.

2.2 Arrivals and Acceptances

We work in a discrete-time setting, which implies that all random variables (rv’s) and
parameters (such as the ωi) are expressed in multiples of a (generic) time slot length.
We assume the bursts arrive in the system according to a Bernoulli arrival process, with
parameter p. This implies that at the most one arrival occurs during a slot, and p gives
the probability of such a burst arrival, for an arbitrary slot.

Arriving bursts are either accepted upon arrival (during available periods), or drop-
ped (unavailable periods). We number the bursts in the order at which they arrive, but
only assign an index to those bursts that are accepted. With each accepted burst k, we
associate an inter-arrival time Tk, that captures the time between the kth arrival and the
next burst arrival, being the arrival of (i) burst k + 1, if this next burst is accepted or (ii)
a burst without number, if this next burst is dropped. For the assumed Bernoulli arrival
process, these inter-arrival times Tk form a sequence of identical and independently
distributed (iid) random variables (rv’s) that have a common geometric distribution,
with parameter p

Pr[Tk = n] = t(n) = p · p̄n−1, n ≥ 1. (1)

Here, p̄ is the commonly adopted shorthand for 1 − p. The inter-acceptance time Ak

is defined as the time between the kth acceptance and the (k + 1)th, and is in general
larger (and never smaller) than Tk.
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To track the system’s performance in an easy way, we consider two mutually exclu-
sive events, for an arbitrary accepted burst k.

Next-Accept. The burst that arrives just after the kth burst is accepted, and counted
as burst k+1. The inter-acceptance time Ak is identical to Tk, and thus, it follows from
(1) that

Pr[Ak = n|Next-Accept] = t(n) = p̄ · pn−1, n ≥ 1. (2)

Next-Drop. The burst that arrives just after burst k is dropped. Now, the burst fol-
lowing burst k is not assigned an index, and possibly, even more bursts are dropped
before burst k + 1 is accepted. The inter-acceptance time Ak clearly differs from the
inter-arrival time, and has a more complicated probability distribution. Luckily, the lat-
ter need not be tracked, and we rely on an additional measure: the reactivation time Ãk,
defined as the time between the end of the unavailable period following the kth burst,
and the arrival of burst k + 1. Note that the reactivation time is only relevant if the as-
sociated burst k effectively causes burst loss, by driving the system into an unavailable
state. Invoking the memoryless nature of the arrival process, the reactivation time is
easy to trace, and intimately linked to the inter-arrival times (1),

Pr[Ãk = n|Next-Drop] = t̃(n) = p̄ · pn, n ≥ 0. (3)

The complementary use of the series of random variables Ak and Ãk suffices to
capture the timing aspects of arrival and acceptance, relevant for our analysis.

2.3 General Burst Sizes

For the characterization of the burst sizes, we adopt the mentioned numbering of bursts,
and so the kth burst has a burst size Bk. The burst sizes, just like the inter-arrival times,
form a sequence of iid rv’s with a common distribution, but have no further restriction
on their distributions. Therefore, we consider general probabilities

Pr[Bk = n] = b(n), n ≥ 1, (4)

that are arbitrary, except for the conditions that any useful probability mass function has
to comply with: 0 ≤ b(n) ≤ 1,

∑
n b(n) = 1.

2.4 System Equations

As mentioned, the system’s evolution can be captured by means of the waiting time of
a burst only. Still using the same numbering, we associate the waiting time Wk with the
kth burst, and define it as the time between the acceptance of burst k, and the start of
it’s transmission. Again considering that either the next burst is accepted or dropped,
we have

Next-Accept. The condition for this to happen, in terms of waiting times and FDL
lengths, is that the burst that arrives just after the kth burst can be provided a sufficiently
long delay, that is,

Wk + Bk − Tk ≤ ωN .
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Then, Ak equals Tk, and

Wk+1 = �Wk + Bk −Ak�Ω, (5)

where we adopted the notation �x�Ω = inf{y ∈ Ω, y ≥ x}, x ≤ ωN .

Next-Drop. Now, the burst that arrives just after the kth burst can not be provided a
sufficiently long delay, and

Wk + Bk − Tk > ωN .

As a result of this (and of the memoryless nature of the arrival process), the waiting time
of burst k + 1 no longer relates to Wk , and Wk+1 is characterized by the reactivation
time, through

Wk+1 = �ωN − Ãk�Ω. (6)

These two system equations (5) and (6), together with their respective probability
mass functions (2) and (3), provide the input for the analysis.

3 Analysis

In this section, the limited set of waiting times serves a state variable for a Markov
chain, of which we trace the transition probabilies. Inversion yields the waiting time
probabilities of accepted bursts, and this in turn allows to extract the loss ratio.

3.1 Markov Chain for Waiting Time

Before delving into the analysis, we note that the waiting time can only take on N +
1 different ωi ∈ Ω. Therefore, it is an attractive state variable for a Markov chain
approach to the system.

The Markov chain we consider consists of N + 1 states, that correspond to N + 1
possible waiting times ωi, i = 0 . . .N . It is characterized by a transition matrix with
probabilities βij ,

βij = Pr[Wk+1 = ωj |Wk = ωi], 0 ≤ i, j ≤ N.

For ease of notation, we introduce ω−1 = −∞. We split βij in two separate contribu-
tions, that correspond to the events discussed in Sect. 2.4.

βij = Pr[ωi + Bk − Tk ≤ ωN , ωj = �ωi + Bk −Ak�Ω]

+Pr[ωi + Bk − Tk > ωN , ωj = �ωN − Ãk�Ω]
= Pr[ωj−1 − ωi < Bk − Tk ≤ ωj − ωi]

+Pr[Bk − Tk > ωN − ωi]Pr[ωN − ωj−1 > Ãk ≥ ωN − ωj ]. (7)

Since the burst sizes Bk and inter-arrival times Tk only occur as Bk−Tk, we introduce
the series of random variables Uk = Bk − Tk, and it’s cumulative distribution function
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(CDF) U(n). Taking into account the distribution of Bk and Ak, calculations show that
U(n) simplifies to

U(n) = Pr[Bk −Ak ≤ n] =
n∑

i=1

b(i)(1− p̄i−n−1) + p̄−n−1B(p̄), (8)

where the sum over n disappears if n ≤ 0, and B(z) is the probability generating
function of Bk, defined as B(z) = E[zBk ] =

∑∞
n=1 b(n)zn. Similarly, we consider (3)

to obtain the CDF of Ãk, Ã(n), as

Ã(n) = Pr[Ãk ≤ n] = 1− p̄n+1, n ≥ 0, (9)

and zero when n < 0. Adopting these notations, (7) can be stated as

βij = U(ωj − ωi)− U(ωj−1 − ωi) (10)

+[1− U(ωN − ωi)][Ã(ωN − ωj−1 − 1)− Ã(ωN − ωj − 1)]

Combining the last three expressions, we obtain an explicit expression for the coef-
ficients βij , in terms of the (given) ωi, b(n) and p.

From here, we obtain the vector of the waiting times as the normalized left eigen-
vector [w(n)] of the matrix [βij ], associated with the eigenvalue 1, that is to satisfy
w(n) =

∑N
j=0 w(j)βjn, 0 ≤ n ≤ N . This eigenvector can easily be obtained numer-

ically, posing no problem for the small N we are interested in. It contains the N + 1
different steady-state waiting time probabilities

lim
k→∞

Pr[Wk = ωn] = Pr[W = ωn] = w(n), 0 ≤ n ≤ N. (11)

From this, we can also define a mean waiting time E[W ] =
∑N

i=1 w(i)ωi.

3.2 Loss Ratio

Up to now, we considered only bursts that were accepted, and even chose to leave the
dropped bursts unnumbered. We now focus on the burst loss ratio (LR), defined as the
fraction of arriving bursts that is dropped, and study the unavailable period, associated
with an accepted burst k, in two cases. If on the one hand, the arrival of burst k does
not push the system into unavailability, then the unavailable period following burst k
equals zero. This implies that, the time slot after the arrival of burst k, a new arrival can
already be accepted. In terms of the involved rv’s, this means that Wk + Bk − 1 ≤ ωN .

On the other hand, if the unavailable period following burst k is larger than zero,
then Wk + Bk − 1 > ωN . Now, it takes the system a number of slots equal to Wk +
Bk − ωN − 1, to become available again. The last measure is the unavailable period
following burst k, under the condition Wk + Bk − 1 > ωN . Combination of both
cases lead to the conclusion that the unavailable period, following burst k, is given
by (Wk + Bk − ωN − 1)+, where (x)+ is shorthand for max{0, x}. Invoking the
memoryless nature of the arrival process, we can write down an expression for E[Xk],
the average number of lost bursts during the unavailable period following burst k,

E[Xk] = p · E[(Wk + Bk − ωN − 1)+]. (12)
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With (4) and (11), this becomes

E[Xk] = p ·
⎛

⎝E[B] + E[W ]− ωN − 1−
N∑

i=0

w(i)
ωN−ωi∑

j=1

b(j)(j + ωi − ωN − 1)

⎞

⎠ .

Now, it suffices to note that, with every accepted burst, a number of E[Xk] bursts on
average is dropped, resulting in a burst loss ratio (LR)

LR = E[Xk]/(1 + E[Xk]).

4 Numerical Results and Discussion

With the above results at hand, one can easily study the impact of the various design
parameters on loss performance. More specifically, one wants to determine optima for
the granularity, which are values that yield a minimal burst loss ratio. While similar
curves already occur in [6] for N = 20, the approximation applied there lost accuracy
for small N . As such, the examples given here yield additional information, for the case
of smaller (more realistic) buffer sizes. We look at four examples.
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Fig. 1. Loss ratio as function of the FDL granularity (slots), for various buffer sizes N , burst size
distributions (a) and (b), both with E[B] = 50 slots, for a load ρ = 0.2

In both panes of Fig. 1, we assess the impact of a small buffer size on loss per-
formance. They show the burst loss ratio (LR) as a function of the granularity D, for
an equidistant delay line setting, E[B] = 50, and a load of ρ = 0.2. The left pane
displays the situation for geometric burst size distribrution, with the expected rise of
the loss ratio, when the buffer size N decreases. Also, it can be seen that the LR lowers
for increasing granularity, and only starts to rise again for D larger than about 150 slots.



192 W. Rogiest et al.

Considering the five curves together, the figure suggests that the optimal granularity,
for a given load, only slightly increases when the buffer size approaches its minimum
of N = 1. Results for higher loads, not included here, confirm that the influence of
diminishing buffer size on optimal granularity is but weak, especially if compared to
the impact of variations in the load. The latter is illustrated in [6], and is much stronger
than the influence observed here.

On the right pane of Fig. 1, we have the same setting, for fixed burst sizes, E[B] =
B = 50. Again, a smaller buffer suffers more loss, but now the optima alter in a more
surprising way. More precisely, the “notches” at D = (B− 1)/n, n = 1, 2, . . . , known
from previous work, are not uncountable (as was the case in [6] for an infinite-sized
buffer), but are limited in number to N . Exactly N notches occur for each curve, at
D = (B−1)/n, n = 1, 2, . . .N . Since it is known from [6] that these values correspond
to optima (with D = B − 1 being the optimum for low load, and D = (B − 1)/2, then
(B−1)/3,... for increasing load), we verified and found that the set of potential optima,
for a load 0 ≤ ρ ≤ 1, is indeed limited to (at the maximum) the number of fibers.
Also, it was found that the same optimum shift as known from [6] takes place, but now
only over the available values: first D = B − 1 for low load, then D = (B − 1)/2 for
increasing load if N ≥ 2, and so on if N ≥ 3...
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Fig. 2. Loss ratio as function of the FDL granularity (slots), for E[B] = 50 slots, with (a) uniform
burst size distributions (various radii Q) and (b) different burst size distributions for an equidistant
and non-equidistant setting, load ρ = 0.5

To verify if the optima for deterministic burst sizes also apply to varying burst sizes,
we consider a uniform burst size distribution with radius Q, that has a mean burst size
E[B] = 50, and is uniform within the range [50−Q, 50+Q]. For small Q, this distribu-
tion resembles the deterministic distribution. As such, this setting allows to verify what
influence variances on the burst size have on loss performance. In Fig. 2, the left pane
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compares the performance of an optical buffer of size N = 3 for three uniform distri-
butions, having a narrow range (Q = 5, range [45, 55]), an intermediate range (Q = 25,
range [25, 75]) and a broad range (Q = 49, range [1, 99]), and this for load ρ = 0.2,
ρ = 0.4, respectively. For the narrow-ranged one, the curves look very similar to those
of the deterministic distribution, and the same optimum around D = B − 1 shows.
The curves for the intermediate-ranged and broad-ranged case show that increasing Q
makes the granularity optimum shift toward higher values, at least for load ρ = 0.2 and
ρ = 0.4. Curves not included here, for higher load, show that the optima for a narrow
range (small Q) concentrate around the limited set D = (B − 1)/n, n = 1, 2, . . .N ,
known from the deterministic distribution, while for larger Q, the optimum only gradu-
ally decreases.

Choosing non-equidistant lengths for the delay lines can in some cases provide bet-
ter performance. As is shown in [11] for deterministic burst sizes, a non-equidistant set
of FDLs can outperform an equidistant set of the same size. However, it turns out that
this happens only when the load rises above a certain value (for example 60.17%, for
N = 10, B = 20, D = 19). Further, even when the non-equidistant one outperforms
the equidistant one, the performance gain is rather small. This said, non-equidistant set-
tings remain interesting, since for more general assumptions (correlated arrivals, multi-
wavelength output), the performance gain might be larger. For the right pane of Fig. 2,
we chose non-equidistant FDL lengths in a way similar to [11], with shortened lengths
for the largest lines. An equidistant set (continuous curves) and non-equidistant set
(dashed curves) are considered, for a buffer size N = 5, load ρ = 0.5, and the burst
size distributions geometric, deterministic and uniform (Q = 49). The non-equidistant
set has FDL lengths D, 2D − 2, 3D − 3, 4D − 4, 5D − 8. The curves show how
the non-equidistant set just outperforms the equidistant one, for geometric and uniform
burst size distribution, while the opposite is true for a deterministic burst size distribu-
tion. Although not included here, figures for the same setting, for a load of ρ = 0.3,
ρ = 0.6 and ρ = 0.8 resp., show the same qualitative result, while the performance
difference itself always remains small.

5 Conclusions

Unlike previous work, we have studied an optical buffer by considering only the waiting
times, that correspond to the lengths of the Fiber Delay Lines (FDLs). This straightfor-
ward approach allowed us to obtain exact results for a small computional load, espe-
cially for small buffers. Without posing restrictions on the lengths of these lines, we
constructed a model valid for a Bernoulli arrival process, and a general burst size dis-
tribution, based on the analysis of the involved Markov chain. The results of the latter
we used to obtain (i) the steady-state waiting time probabilities and, by considering the
unavailable periods, (ii) the loss ratio.

The presented performance graphs show the impact of reduced buffer size on per-
formance, and the associated optimal value for the granularity. While the optimum for
geometric burst size distributions hardly changes when we lower the buffer size, the
optimum for a deterministic burst size distribution does change. Also, a study of a uni-
form distribution showed how smaller and larger variation around an average burst size
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impacts performance. Finally, performance results for a non-equidistant set were com-
pared to those of an equidistant set.

Concluding, the model presented here is rather elementary in it’s approach, and
therefore provides a basic tool, ready to use for optimization studies. The extension
of the model toward (i) multi-wavelength systems, (ii) correlated arrivals, we consider
challenging, and would surely lead to a more profound insight in the operation of optical
buffers.
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Abstract. In shortest path routing, traffic is routed along shortest paths
defined by link weights. However, not all path systems are feasible in
that they can be realized in this way. This is something which needs to
be taken into account when searching for a set of paths that minimize
capacity consumption.

In this paper, we discuss a new necessary condition that can be used
during search to prune infeasible path systems. The condition can be
expressed using linear inequalities, or used in constraint programming,
where its simple definition is convenient for the efficient implementation
of propagation. Experiments on networks from the SNDLib benchmark
show that this condition has strong pruning capabilities.

1 Introduction

In shortest path routing, e.g., the widely used OSPF protocol, traffic flows are
controlled by assigning a weight to each link in the network. Point-to-point traffic
is routed along shortest paths, as defined by these weights. Different settings of
the link weights will lead to different path systems. We say that a path system
is feasible if there is a weight system in which every path in the path system
is a shortest path. Depending on the amount of bandwidth required between
different node pairs and link capacities, some path systems are preferable to
others, e.g., by minimizing the maximum percentage of bandwidth used on each
link. In general this optimization problem is NP-hard [1].

Many approaches have been used for finding a weight system that uses the
network in an optimal way, given demands and capacities. Here, we consider
constraint-based methods, which model the problem using variables and con-
straints, e.g., mixed integer programming (MIP) and constraint programming
(CP) [2]. They can both be used as a basis for complete search methods, guaran-
teed to find an optimal solution. Such model-based approaches typically include
a set of variables describing the path system, as the optimization criteria can be
conveniently expressed on these variables.

The model also needs to constrain the path system to be feasible. In this
paper we discuss a necessary condition for feasibility, which we call the 4-node
condition, that is well suited for use in a complete model-based method using
systematic search. This condition assumes two further restrictions on the path
system: unique paths and symmetry. Path uniqueness means that there should
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be only one (unique) shortest path between each node pair. Symmetry means
that traffic from node s to node t should use the same (undirected) path as
traffic from node t to node s. We have previously used the condition in a CP-LP
hybrid method for solving the problem with these restrictions [3].

In this paper, we look specifically at the constraints dealing with feasibility,
of the CP part of the hybrid method. We present experimental work showing
that the condition is very useful for pruning subtrees without feasible solutions.

The paper is organized as follows. In Sect. 2, we give a more formal definition
of the problem and discuss its modelling. Section 3 defines the 4-node condition
and describes some of its properties. In Sect. 4, we describe a CP model using
the 4-node condition, followed by experimental work in Sect. 5. Conclusions and
discussion of future work are given in Sect. 6.

2 Problem Definition and Modelling

2.1 The Problem

We are considering shortest path routing optimization with the extra require-
ment that all paths should be unique. Furthermore, we consider only undirected
demands, i.e., we do not distinguish between demands from s to t and t to s.
Due to the undirectedness of the demands, the network topology can be mod-
elled with an undirected graph (V, E). We use set notation, {i, j}, to denote the
undirected edge between i and j.

Apart from the graph, an instance of the unique undirected shortest path
routing problem specifies the link capacity c{i,j} for each edge {i, j} ∈ E, and
the sum of all bandwidth, d{s,t}, demanded between every pair of nodes, s and
t. If there are no demands between s and t, then d{s,t} = 0.

A feasible solution for such an instance defines a positive integer weight w{i,j}
for each edge, in such a way that these weights define unique shortest paths
between all node pairs. We refer to the resulting set of paths as a feasible path
system. The demands and the path systems define how much capacity is used
on each link. The objective is to optimize some function of the capacity usage,
e.g., to minimize the utilization of the maximally utilized link in the network.

2.2 Modelling of the Problem

We consider solution methods that model the problem using variables and con-
straints. Given a model, the problem is typically solved by a systematic search
in the space of possible variable assignments. During the search process, the con-
straint model is used for pruning and computation of bounds. The quality of the
constraint model lies in its ability to prune and provide tight bounds. Typical
methods that fit in this framework are MIP and CP.

Constraint-based methods for shortest path routing need to express both con-
straints that guarantee feasibility, and optimization criteria. The latter are most
easily expressed on flow variables that model the amount of flow on a specific
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link. These flow variables are linked by constraints to path variables, modelling
the path system.

Modelling the path system can be done in several ways. What then remains is
to enforce feasibility upon the model. The only known way for testing the feasi-
bility of a path system uses a linear program. Its running time is polynomial, but
can still be costly to compute. Using this approach introduces weight variables,
one per link, and constraints linking them to the path variables. One problem
with using such an approach with MIP seems to be that the linear relaxation of
the model is weak. One potential way to deal with this problem is to introduce
cuts, extra inequalities that help tighten the relaxation [4].

An alternative is to model using simpler conditions that are necessary but not
sufficient for feasibility, meaning the model will allow some path systems that are
not feasible. Several necessary conditions have been described in the literature
[5,6]. Before a solution is finally accepted, it needs to be checked using the more
expensive LP-based method that encodes a necessary and sufficient condition.

3 The 4-Node Condition for Path System Feasibility

We believe that problems similar to the weak linear relaxations for MIP apply
to CP models using explicit weight variables. Therefore, our approach to the
problem does not use weight variables, but the second approach outlined in the
previous section, using necessary conditions to prune the search space as much as
possible, followed by an LP-based test for each candidate solution. In this section,
we introduce the 4-node condition that was used. In Sect. 4, we show how it was
integrated into a CP method, and in Sect. 5, we give some experimental results.

3.1 The 4-Node Condition

Consider any four nodes, a, b, c, and d, in a network graph. Six node pairs that
involve these nodes can be formed, and for each there should be a shortest path.
Some of these paths may be subpaths of others, or may partly overlap. However,
not all situations in which several paths overlap are feasible.

In Fig. 1, some feasible situations (Fig. 1(a-f)) and some infeasible ones (Fig.
1(g-h)) are shown. Only paths that include another of the four nodes are drawn,
meaning that node pairs that have no path drawn between them have a path
that does not pass either of the two other nodes. The situation in Fig. 1(g) is
infeasible, since the path from a to d passes node b, but the path from a to c
passes d without passing b. The six first situations are feasible, and basically the
only feasible ones, up to permutation of the nodes.

We want to formalize this notion of feasibility of a path system with respect
to sets of four nodes. To do this, we model a path system, using binary node
path variables. The node path variable y{s,t}u, has value 1 if and only if node
u is used in the path between s and t. For each pair of nodes, s and t, we will
have |V | − 2 node path variables. Clearly, a path system defines a value for each
node path variable. We will see that for a feasible path system, the reverse also
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Fig. 1. Some situations for paths involving four nodes

holds, so that there is a one-to-one mapping between feasible path systems and
assignments to node pair variables.

For four nodes, there are twelve node paths variables that are defined only on
these nodes. Assuming that the path system is feasible restricts what combina-
tions of values we can have for these twelve variables:

Definition 1. We say that an assignment of the twelve node path variables only
mentioning the same four nodes is 4-node consistent if there exists a feasible path
system in which the variables would have these values.

For twelve binary variables, we have 4096 possible assignments. Out of these, it
turns out that only 53 are actually 4-node consistent. For example, the assign-
ment with y{a,b}c = 1, y{a,b}d = 1, y{b,d}c = 1, and all other node path variables
zero is not 4-node consistent. This corresponds to the situation in Fig. 1(h).
Also assigning y{a,c}d = 1 would make the assignment 4-node consistent, corre-
sponding to the situation in Fig. 1(f).

Definition 2. We say that a path system is 4-node consistent if its represen-
tation by node path variables has all groups of twelve variables that are defined
on the same four nodes being 4-node consistent. A partial path system is 4-node
consistent if it can be extended to a fully defined 4-node consistent path system.

It is important to note that 4-node consistency for a path system is only a
necessary condition for feasibility, not a sufficient one. In other words, there are
4-node consistent path systems that are not feasible.

3.2 Linear Inequality Formulation

The 4-node condition for nodes a, b, c, and d, can be expressed using linear
inequalities of the following three types:
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y{a,b}c + y{a,c}b + y{b,c}a ≤ 1 (1)

2y{b,d}c + 2y{a,d}b − y{a,c}b − y{a,d}c ≤ 2 (2)

2y{c,d}a + 2y{c,d}b − y{b,d}a − y{b,c}a − y{a,d}b − y{a,c}b ≤ 2 (3)

To encode the 4-node condition, we must include all versions of the above
constraints where some or all of the node indices have been permuted. In all,
there will be 4 unique constraints of the first type, 24 of the second type and
6 of the last type. Building a model where all these constraints are expressed
explicitly for all groups of four nodes would be expensive. The alternative for
MIP could be to use them as cutting planes in a branch-and-cut approach, or
as will be shown in the next section, to express the 4-node condition implicitly
in a CP approach.

3.3 Some Properties of the 4-Node Condition

Here we informally (due to limited space) discuss some properties of the 4-node
condition. We assume that for a given network, we have a full 4-node consistent
assignment to all node path variables.

Consider all nodes that appear on the path between nodes s and t, i.e., all u
s.t., y{s,t}u = 1. We show that 4-node consistency implies an order for the nodes
on the path. Define u ≺ v ⇔ y{u,t}v = 1∧ y{v,t}u = 0. If the node path variables
are 4-node consistent, the relation ≺ will be a total order, defining the order of
the nodes in the path between s and t. This implies that a 4-node consistent
assignment to all node path variables uniquely defines a path system.

Consider the node s′ adjacent to s on the path between s and t. The 4-node
condition implies that the path from s′ to t will contain the same nodes as the
path from s to t, excluding s, and in the same order. Inductively, this implies
that the path between any pair of nodes, u and v, on the path between s and
t will follow the path between s and t. As a consequence, the 4-node condition
implies a property called suboptimality, introduced in [5].

4 Using the 4-Node Condition in a CP Model

In this section we describe a CP model, originally introduced in [3], for the
problem. This model uses the 4-node condition for pruning during search.

4.1 Constraint Programming

In CP, modelling is typically done with variables with finite discrete domains.
Constraints on subsets of variables restrict what partial assignments are allowed,
consistent, for those variables. The constraints collectively define the set of feasi-
ble solutions for the problem as a whole – full assignments consistent with every
constraint. The set of constraints can be heterogeneous, unlike linear program-
ming where only linear inequalities are allowed. Unlike LP, inference in CP is
not global, not taking all constraints into account at once, but done by each
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constraint in isolation. Whenever a variable has its domain of possible values re-
duced, constraints involving that variable may infer domain reductions in other
variables, which in turn may lead to further domain reductions in other vari-
ables. This process is known as constraint propagation, and will be triggered at
each new search node by any domain reductions caused by the branching deci-
sion. Thus each constraint is equipped with a specific filtering algorithm, which
is invoked whenever there is a domain reduction in any of the variables involv-
ing the constraint, and is responsible for the inference and enforcing of domain
reductions in its other variables. When a domain has its domain emptied, we
have discovered an inconsistency, and the search will backtrack.

4.2 Constraint Programming Model

We use two ways of modelling a shortest path for each node pair: as a set of edges
and as a set of nodes. Binary edge path variables, x{s,t}{u,v}, have value 1 iff the
edge {u, v} is used in the path between s and t. Binary node path variables,
y{s,t}u, have value 1 iff node u is used in the path. For convenience, here we
include y{s,t}s = y{s,t}t = 1.

Below, we describe the conditions that are used in the constraint model. As
the number of conditions used is very large, in the implementation we do not have
an explicit constraint for each condition. Instead we have one single constraint,
defined on all edge and node path variables, checking consistency and doing
propagation for all the conditions. This is equivalent in effect, but makes the
implementation more efficient.

The full model in [3] also includes variables modelling the flows on links, and
capacity-based optimization criteria. As we are only concerned with feasibility,
these are not included here.

Chanelling Condition. Both edge path and node path variables are by them-
selves sufficient to model unique paths between all node pairs. However, in the
CP part of the model, some conditions are more naturally expressed on the node
path formulation, some on the edge path formulation. Therefore, we keep both,
and use channelling conditions to keep the two representations consistent. For
each edge path variable, we have the following condition:

x{s,t}{u,v} = 1↔ y{s,t}u = 1 ∧ y{s,t}v = 1 ∧ (∀w.w 	= u ∧ w 	= v → y{u,v}w = 0)
(4)

Unique Path Condition. For each node pair {s, t}, the edge path variables
x{s,t}{u,v} should define a unique simple path between s and t. This condition
can be enforced partly by restricting the number of adjacent edges for each
node. Nodes s and t have exactly one adjacent edge path variable set to one,
and other nodes have either two adjacent edge path variables set to one (if they
are included in the path), or none (if they are not included in the path). This
condition will be enforced every time an edge path variable is set. However,
it does not rule out disconnected cycles, so we will also need to enforce that
no cycles are constructed. This is done whenever a path connecting s and t is
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finished, when we know that all edge path variables that are not included in the
path should be set to zero.

4-Node Condition. Our constraint will impose that the partial assignment of
node path variables should be 4-node consistent at any time during the search.
It also does propagation, for each group of twelve variables detecting if an unas-
signed variable can have its value inferred, i.e., if it has the same value in all
extensions of the partial assignment that are 4-node consistent with respect to
the twelve variables.

The simple formulation of the 4-node condition in terms of node path vari-
ables is an advantage here, since it makes propagation convenient. Every time
a node path variable is assigned, there is opportunity for further propagation.
The implementation is basically a case analysis. When a variable is assigned, all
possible consequences of this assignment according to the 4-node condition are
considered. The structure of the condition can be exploited, so it is not necessary
to explicitly consider all 53 possibilities for every group of twelve variables where
the variable is included.

5 Experiments

5.1 Generating Full Search Trees

We first performed experiments to investigate the ability of the 4-node condition
to prune search nodes from which no feasible path system can be completed.
Pruning can take place either explicitly, by detecting inconsistency at a search
node, or by propagation, which will set the value of a path variable, thus reducing
the size of the remaining search space.

To measure the strength of the 4-node condition, we generated random net-
work topologies and constructed the entire search tree, containing all feasible
solutions. We did this using the constraint model presented in Sect. 4 (which we
refer to as method 1), recording the number of feasible solutions found, and the
total number of nodes in the search tree, including solution nodes.

As the 4-node condition is not a sufficient condition for feasibility, some leaf
nodes will be generated that are consistent with all the constraints but still do not
correspond to a feasible path system. To find out how many such nodes occur, we
have also run our CP model with a post processing step, where every consistent
leaf node is tested using a necessary and sufficient condition for feasibility (we
refer to this as method 2). The number of leaf nodes passing this test is equal
to the number of feasible path systems.

We also compared the performance of our constraint model to a model where
the 4-node condition was replaced by an LP formulation of the weight setting
problem (we refer to this as method 3). This LP formulation is a necessary and
sufficient condition for feasibility, and is applied at every search node, where it is
able to take assigned node path variables into account. This should detect at least
all inconsistencies that the 4-node condition detects, but will not give any propa-
gation. The main drawback comparing to the 4-node condition is that it is much
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Table 1. Results for full search trees

|V | |E| |F | |C| |Nc| |Tc| |Nl| |Tl|
4 6 53 53 105 0.08 105 0.11
5 7 92 92 183 0.02 219 0.21
5 10 2668 2668 5485 0.29 6799 9.63
6 9 618 618 1243 0.09 2189 2.94
6 9 986 986 2089 0.16 3479 4.68
6 12 37906 38290 81161 4.48 131597 227.04
6 15 583201 589921 1251361 78.45 - -
7 10 368 368 765 0.11 1597 2.77
7 10 1736 1736 3593 0.36 8821 16.30
7 14 369499 380680 807927 62.31 - -
7 14 360545 361627 756453 55.33 - -
8 12 40120 42880 97203 8.72 270305 851.32
8 12 30291 30311 63597 5.75 193081 579.18
9 13 42408 42408 89621 11.18 385963 1848.00

Table 2. Results for randomly
generated solutions

network |V | |E| fr fd

bwin 10 45 17 20

cost266 37 57 13 20

di-yuan 11 42 11 20

france 25 45 16 20

germany50 50 88 9 7

newyork 16 49 12 20

nobel-eu 28 41 19 20

nobel-germany 17 26 20 20

nobel-us 14 21 16 20

norway 27 51 19 20

pdh 11 34 16 20

pioro40 40 89 4 0

polska 12 18 19 20

zib54 54 80 8 18

slower. There are faster LP-based conditions [5], but these are less well-suited for
taking assigned node path variables at interior nodes into account. Thus, what
is interesting to look at for this method, comparing to the 4-node condition
(method 1), is not so much the runtime as the number of generated nodes.

One complication with this kind of testing is that the number of solutions
grows very fast with network size. Therefore we have only been able to test
rather small randomly generated networks, using the same generation method
as in [3]. We only show results for the networks where we were able to determine
the number of feasible solutions, using method 2. Results are presented in Table
1. The first two columns indicate the number of nodes and edges (in bold if
the graph is complete). |F | denotes the number of feasible path systems, and
|C| the number of path systems consistent with the 4-node condition. |Nc| is
the total size of the search tree and |Tc| the total time in seconds used for the
pure constraint model (method 1). The last two columns give the corresponding
information for the LP-based method (method 3). Note that a binary search tree
with |F | feasible solutions will have at least |F | − 1 internal nodes, so the total
number of nodes will be at least 2|F |− 1. The timeout was set to one hour. The
experiments were done on an Intel Pentium M 1.6 GHz Linux machine, using
the constraint solver JaCoP [7] together with the LP system lp solve.

Using only the 4-node condition produces a few leaf nodes that are consistent
with all constraints but still not define feasible path systems. However, this is a
small percentage in all cases. We have |Nc| close to 2|F |−1, which indicates very
good propagation. Furthermore, the pure constraint method is very fast, being
able to handle thousands of nodes every second. In comparison, the complete
third method generates more internal nodes, due to the fact that it does not do
propagation, and, as noted above, is a lot slower.
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5.2 Randomly Generated Solutions

As seen above, generating the entire search tree restricts the size of network that
we can investigate. The advantage is that we can measure the number of internal
nodes, not only the percentage of consistent leaf nodes that are actually feasible.
However, restricting to small networks may exclude larger infeasible structures
that are difficult for the 4-node condition, which is local in nature, to detect.

For larger networks, we instead run our CP method until it finds a first con-
sistent solution and then break. The method’s default search heuristic chooses
an edge path variable to branch on at each internal node, and then first tries the
branch where the variable is assigned to one. There is some randomness (random
tie-breaking) in the choice of which variable to branch on, so different runs of
the method will find different first consistent solutions. This makes it possible
to estimate the percentage of 4-node consistent path systems that are infeasible.

The default search heuristic is designed to try paths using few links first,
since we are looking for path systems that lead to as little capacity consumption
as possible. As a result, our random sampling of path systems will also favor
such path systems, which is reasonable since these are the path systems that
the condition is most likely to be applied on. However, we also test a more even
random sampling, which is achieved by randomly choosing which branch to try
first at each internal node: assigning the edge path variable to 0 or 1.

We tested both variants of the search heuristic on a number of network topolo-
gies from the SNDLib benchmark set [8]. Results are presented in Table 2. For
each network, we performed 20 tests each for the two search heuristics. In col-
umn fr is the number of those runs that produced a first consistent path system
that was also feasible for the random branch ordering. Column fd gives the same
result for the default branch ordering.

In general, the default value ordering works better, and produces feasible
solutions with high probability. This is probably a consequence of the default
value ordering’s preference for short simple paths, while the random variable
ordering may produce more complex path systems. The notable exceptions to
this pattern are networks ’germany50’ and ’pioro40’. The size of the networks
may explain their bad performance, but it is more unclear why the random value
ordering works better than the default one.

6 Conclusions

We introduced a necessary condition for the feasibility of path systems in unique
shortest path routing for undirected demands, and showed some of its properties.
A CP model using this condition was described and experiments using this model
shows that the condition is able to prune most infeasible path systems for small
and mid-size networks.

Several directions exist for future work. A similar approach could be applied
to the same problem with directed demands. One of the drawbacks of modelling
path systems with node path variables is the large number of variables needed.
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Possibly, techniques similar to column generation could be used in CP, introduc-
ing variables only if necessary. Finally, the linear inequality formulation of the
condition could be tried with an MIP model for the problem.
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Optimal Congestion Control with Multipath

Routing Using TCP-FAST and a Variant of RIP

Enrique Mallada and Fernando Paganini
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Montevideo, Uruguay

Abstract. This paper discusses an optimization-based approach for con-
gestion control together with multipath routing in a TCP/IP network.
In recent research we have shown how natural optimization problems
for resource allocation can be solved in decentralized way across a net-
work, by traffic sources adapting their rates and routers adapting their
traffic splits, all using a common congestion measure. We present here
a concrete implementation of such algorithms, based on queueing delay
as congestion price. We use TCP-FAST for congestion control, and de-
velop a multipath variant of the distance vector routing protocol RIP.
We demonstrate through ns2-simulations the collective behavior of the
system, in particular that it reaches the higher transfer rates available
through multiple routes.

1 Introduction

The use of multiple paths between a source and destination of traffic is a natural
choice to enhance the performance of a network, especially for bulk transfers
that care mainly about the overall throughput. Flow could stream over many
channel paths inside the network, adapting to whatever capacity is available at
the moment. This ideal calls, of course, for a more active role for the network
layer than that of current practice. In the prevailing situation, IP routing is
insensitive to congestion and the only real-time control is done by the transport
layer, designed to be single path; even if multiple TCP streams are used, there
is limited control from the source as to how traffic travels inside the network.
To fully explore the multipath options from the source (or an overlay at the
edge of the network) as recently investigated in [7,4], is not scalable given the
exponential number of end-to-end paths.

A scalable alternative requires participation of the routers. Two main argu-
ments against involving routers in real-time adaptation are (i) to keep them
simple, and (ii) that congestion-based adaptation leads to instabilities such as
route flaps. Tackling the second one first, it is well recognized that the main rea-
son for such flaps is the use of single path routing, in which large bulks of traffic
are suddenly switched. For multipath routing, stable methods based on gradual
adaptation of the split of traffic have been known for a long time [3]. A recent
proposal along these lines is [5], which uses a heuristic rule based on backpressure
signals to adapt routing splits. Other related work for wireless networks is [1,12].

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 205–214, 2007.
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In [9] we proposed a way to combine multipath adaptive routing with the con-
gestion control of TCP. We showed how to formulate global resource allocation
optimization problems, and how to design local, scalable laws at sources and
routers to solve them. In particular, we were able to give theoretical proofs of
global convergence for arbitrary network topologies. These results are briefly re-
viewed in Section 2. Key to the overall solution is the propagation of a universal
“congestion price” across the network.

The purpose of this paper is to develop an implementation of the ideas in
[9]. We take as congestion price the queueing delay, which TCP variants such as
FAST [6] estimate and use for congestion control, and routers can locally mea-
sure. This brings us back to the first point raised above: how complicated would
it be for an IP router to perform multipath routing, and to handle and propa-
gate these congestion signals? In Section 3 we show that the multipath routing
algorithms of [9] fit well with distance vector routing protocols such as RIP (see
[10]); we thus develop an enhancement of RIP to perform the necessary tasks. In
Section 4 we present simulation work in ns2 to demonstrate the feasibility and
properties of this implementation. We use the ns2 distribution of TCP-FAST
[2], and developed our variant on the ns2 version of RIP. Conclusions are given
in Section 5.

2 Combined Congestion Control and Multipath Routing

This section summarizes the ideas of [9] as to how to combine methods of con-
gestion control with multipath routing, and the theory relating these algorithms
to optimization.

2.1 Flow Variables

Consider a set of nodes N , indexed by i, j, connected by a set of directed links
L, each denoted by l or by (i, j). The network supports various flows indexed
by k ∈ K, between a source node s(k) and a destination node d(k), following
possibly multiple paths. We introduce the following variables: xk, external rate
entering the network at the source; yk

l , rate of flow k through link l; xk
i , total rate

of flow k coming into node i. These quantities are subject to the natural flow-
balance constraints. The total flow on link l is denoted by yl, and its capacity
by cl.

2.2 Multipath Routing

The router at node i ∈ N must decide on which of its outgoing links (i, j) ∈ L it
will forward incoming packets with destination d. We introduce, for this purpose,
routing fractions or “ split ratios” αd

i,j satisfying

αd
i,j ≥ 0,

∑

(i,j)∈L
αd

i,j = 1.

This means the rates of flow k satisfy yk
i,j = α

d(k)
i,j xk

i for each (i, j) ∈ L.
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2.3 Congestion Measure

Rates and routes will be controlled in response to a common congestion mea-
sure (called “price”). The basic price pl is a scalar variable that measures the
congestion state of each link l ∈ L, depending on its total traffic yl. In our
implementation of Section 3, pl will be the delay at the queue of link l.

The key to a scalable solution is the ability to summarize in a simple variable
the congestion state of a portion of the network, using current routing patterns.
We define, for this purpose, the node prices qd

i , i ∈ N , each representing the
average price of sending packets from node i to destination d. Node prices must
thus satisfy the recursion

qd
d = 0, qd

i =
∑

(i,j)∈L
αd

i,j [pi,j + qd
j ], i �= d. (1)

At the source node of flow k, the node price summarizes the congestion cost of
the network for this flow. We denote it by

qk := q
d(k)
s(k) .

2.4 Control

There are two main things to control in the network, source rates and router
split ratios, based on the common congestion measure.

Control of source rates is typically done via the congestion window; a more
macroscopic flow model takes the form of a “demand function” xk = fk(qk), in
which rate responds to the congestion price qk. In the case of TCP-FAST, this
function takes the form

xk =
Kk

qk
;

this is equivalent to the source maximizing its “consumer surplus” Uk(xk)−qkxk

for the “utility function” Uk(xk) = Kk log(xk).
Routers must update the split ratios αd

i,j , based on congestion information,
obtained locally or from its neighbors. Rather than instantaneously choosing the
single least congested route, which causes route flaps, an idea that goes back to
[3] is to gradually shift traffic to less congested routes. We impose the following
conditions on the vector of changes {Δαd

i,j}:
– {Δαd

i,j} depends on current ratios {αd
i,j} and congestion prices {pi,j + qd

j }.
– {Δαd

i,j} is negatively correlated with the route prices, and maintains node
balance:

∑

(i,j)∈L
Δαd

i,j(pi,j + qd
j ) ≤ 0,

∑

(i,j)∈L
Δαd

i,j = 0.

– Equilibrium is only reached when all outgoing links in use have equal price,
qd
i = pi,j + qd

j , and the rest have αd
i,j = 0.
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2.5 Optimization Interpretation

The above strategy for control of rates and routes can be interpreted in terms of
distributed optimization. Indeed, in [9] the equilibrium points of such algorithms
are shown to solve one of the following problems, which generalize those in [7,8]
to the case of arbitrary multipath routing.

Problem 1 (WELFARE). Maximize
∑

k Uk(xk), subject to link capacity con-
straints yl ≤ cl, and flow balance constraints.

Problem 2 (SURPLUS). Maximize S :=
∑

k Uk(xk)−∑
l φl(yl) subject to flow

balance constraints.

Both these problems optimize aggregate utility of all sources, in the second case
discounting a “traffic engineering cost”. Which optimization applies depends
mainly on the method used to generate link prices: Problem 2 applies to the
case where the congestion measure is a marginal cost,

pl = φ′
l(yl); (2)

Problem 1 applies to a congestion measure satisfying the dynamics

ṗl = γl[yl − cl]+pl
. (3)

In addition to an interpretation at equilibrium, dynamic properties of these
algorithms are studied in [9]; it is shown that under certain assumptions of time-
scale in the control, they converge globally to the optimal points.

Both of the models in (2-3) have been applied to queueing delay; the first
(a static function of link rate) follows from queueing theory in steady state;
the second from fluid-flow considerations. Regardless of these considerations,
the main point is that taking queueing delay as our notion of congestion, the
proposed methods for adaptation of routes and source rates have a rationale in
terms of solving a global optimization.

3 Implementation

The formalism described in the previous section can be taken as a basis for
more than one implementation, depending on the choice of the link congestion
measure, the source utility function, and the method for sharing congestion
information between routers and with traffic sources. In [9] we outlined some of
the implementation issues in general terms, a discussion we continue here.

3.1 Discussion and Strategy

• A first point concerns the formation of node prices, which are used by routers
to make decisions on traffic splits. Given link prices generated at each router,
the corresponding node prices that satisfy (1) can be found iteratively: each
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node periodically updates qd
i to the right-hand side of (1), based on an-

nouncements of neighboring nodes and its own link prices, and then an-
nounces its new price to its neighbors. Under the assumption of continued
connectivity, it can be shown this recursion converges. The message passing
is exactly the same as in distance-vector protocols such as RIP. The main
change is that instead of taking hop-count as the default metric in routing
announcements, we replace it by congestion price. Specifically, when router
i announces to its neighbors it can reach destination d, it attaches as metric
the corresponding congestion price qd

i .
• Update of router split ratios: an implementation difficulty here, already iden-

tified in [3], refers of the possibility of generating routing loops during the
transient phase (these disappear in equilibrium due to optimality). A block-
ing method was proposed in [3] to avoid this, and can be adapted here as
follows: a loop can only occur if some packets are going “uphill” in price qd

i ,
interpreted as a potential. This “improper” behavior cannot be completely
banned without potentially leading to discontinuities in αd

i,j ; however it can
be flagged, and communicated to neighbors, warning them not to start rout-
ing new traffic in the direction of the improper-behaving node. In this way,
starting from a loop-free configuration, this property is preserved.
• Communication of the price to the sources. A major point of discussion (see

[11]) among congestion control implementations is whether to introduce ex-
plicit congestion signals between routers and sources, or to rely exclusively on
implicit measures which can be estimated by sources. The latter alternative
is usually favored for practical reasons of incremental deployment.

In this paper we hit a middle ground on this issue. On one hand, we
believe that explicit congestion control at the fastest time scale (a price in
every packet) would be both burdensome to the routers, and not very useful
in the multipath context. After all, for routers to find their correct node prices
based on the RIP protocol takes some time, so there is no point in providing
fast feedback of a quantity that may not have the correct value. So we will
favor a congestion signal that sources can implicitly estimate, such as loss
probability or queueing delay. In this way, sources that probe the network
with large amounts of packets may be able to infer the current congestion
measure faster than the time it takes the routers to become aware of it.

Still, these implicit estimation methods may have biases and it is essen-
tial for the correct functioning of the overall system that, over the long
run, sources and routers use compatible prices. Therefore we include, at
the slower time-scale of RIP announcements, an explicit portion of message
passing between sources and routers which sources can use to calibrate their
estimation. This requires the IP layer of a source node to listen to the RIP
announcements, and pass the corresponding price qk up to its TCP layer
which is doing the price estimation.
• When choosing an implicit measure of congestion, to be useful in this scenario

it should respect the recursion (1). From an end-to-end perspective, the price
qk must equal the average price experienced by packets over their respective
routes, according to their corresponding routing fractions. In [9] we outlined
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how loss probability (or ECN marking probability) satisfied this requirement,
to first order. Here we focus on queuing delay: if pl is the delay of each link’s
queue, then qd

i in (1) is the average or expected queueing delay experienced
by a packet between node i and destination. So the price qk at the source is
the average queueing delay experienced by packets when probing all routes.
What sources can explicitly measure is, however, not queueing delay but the
average round-trip-time of their packets,

RTT = D + qk,

where D is the average propagation/processing delay over all routes.
In single-path implementations such as TCP-FAST [6], the propagation

delay is estimated through “BaseRTT”, i.e. the minimum observed RTT,
which assumes that the source has encountered an empty queue at least
for one packet. This assumption can be criticized, especially for a source
that starts transmitting on an already congested path, leading to biases and
unfairness. In any event, this solution is not available for a multipath set-
ting: if the paths have different propagation delays, the required “average
BaseRTT” will be different from the minimum. The correct tracking of this
quantity is one compelling reason for the use of some explicit prices from
the IP layer at a slow time-scale, as described below.

3.2 Details and ns2 Implementation

Multipath Distance Vector Protocol. This protocol is based on the Bellman-
Ford distance vector algorithm, and its most well-known implementation, RIP
(see e.g. [10]). The protocol learns routes to an IP destination address from
its own locally connected networks, and from routes received from neighboring
routers. But, as compared to RIP, our multipath protocol does not discard a
route if it has a shorter (or cheaper) alternative; rather, it maintains in its
routing table all possible next hops for a given destination. Each row in the
routing table is accompanied with its metric, pi,j +qd

j , where pi,j is the queueing
delay of the link, measured as the link queue divided by its capacity, and qd

j is
the metric learned from the downstream router. Also, each row has a variable
that keeps track of the routing fraction αd

i,j using this outgoing link. Forwarding
decisions are made by choosing a pseudorandom number between 0 and 1, and
going through the list of next hops until the sum of the αd

i,j exceeds that number.
When the algorithm starts, it learns the routes from directly connected des-

tinations, and assigns them cost qd
j = 0. Since these are the first routes to be

learned, they are assigned αd
i,j = 1: all traffic for this destination will initially be

routed through this path. Analogously, every time a new destination is discov-
ered it is assigned αd

i,j = 1; on the other hand, new routes learned for an already
known destination are assigned αd

i,j = 0.
Routing announcements of the form (destination, metric, flag) are sent from

each node to its neighbors. These are sent every Δr
t seconds, or also asyn-

chronously if the node has received a notification that changes its routing table



Optimal Congestion Control with Multipath Routing 211

or metric. The first two fields are similar to RIP’s, the metric is the weighted
average qd

i from (1). The additional flag indicates whether this is a proper or
improper route, used for blocking loops: a route is announced as improper if
at least one of the next hops j with αd

i,j > 0 satisfies either (i) qd
j > qd

i , or (ii)
node j’s last announcement had the improper flag on. We also included a version
of RIP’s “poison reverse” method: if node i is sending all its traffic to node j
(αd

i,j = 1), the announcement from i to j carries infinite metric. This helps avoid
trivial loops in the initial stages of the algorithm.

Periodically, with a separate period Δa
t , the adaptation of αd

i,j takes place at
node i. We describe this procedure, denoting for simplicity πj := pi,j + qd

j , the
metric seen by the node for each of its outgoing links:

– Identify the minimum metric πmin = minj πj .
– For links which are more expensive than the minimum, update

αd
i,j(t + Δa

t ) := αd
i,j(t) + βΔa

t (πmin − πj);

β is a system parameter that controls the speed of adaptation.
– The sum of all the decrements in αd

i,j above is compensated by distributed
increments in the cheapest links, except those which are blocked; a node is
blocked if has the improper flag on and is receiving no traffic.

Modifications to TCP-FAST. Associated with source nodes are TCP-FAST
agents. These estimate average RTT and BaseRTT by running, for each received
ACK, the updates

RTT := (1− a) ∗RTT + a ∗ currentRTT (4)

BaseRTT := (1− b) ∗BaseRTT + b(RTT − qk) (5)

The RTT averaging equation (4) is standard: the parameter a can be made
inversely proportional to the current window size. This makes the time constant
of the filter to correspond to a certain number of RTTs. Equation (5) to estimate
BaseRTT is modified from FAST, it is not based on the minimum RTT. Instead,
we apply a lowpass filter, with parameter b << a (so BaseRTT evolves at a
slower time-scale than RTT), driven by the values (RTT − qk), where the prices
qk are computed by the routing agent. In ns2, every time the routing agent at a
node computes a new price qd

i , it checks whether there are any FastTCP agents
at the same node with that destination. If so, it updates the qk parameter used
by that agent.

Another modification required on FastTCP is that, consistently with multi-
path routing, it no longer makes sense to consider the ordering of packet arrivals
in decisions about congestion control. In particular, the duplicate ACK feature
should be removed, and RTT averaging should be performed on all packets, not
just those which come in order. In our current implementation, we sidestep these
issues through the following means: on the receiving end, the receiver sends as
ACK the sequence number of the received packet, rather than the usual of stat-
ing the next expected packet. All these become valid ACKs and are used in
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the RTT computation by the FastTCP source. On the other hand, we emulated
on the source’s side the receptor logic, so that the rest of the protocol did not
require changes.

4 Simulation Results

We present some results for the simple network topology shown in Figure 1.
There are two sources at nodes 1 and 2, a common destination at node 4; both
sources use TCP-FAST with parameter K1 = K2 = 250. This parameter repre-
sents the number of packets to be stored in network queues in equilibrium. There
are two bottleneck links: (2,4) with capacity 37.5 Mbps, and (3,4) with capacity
25 Mbps; both have one-way propagation delay of 25ms. Links (1,2) and (1,3)
have capacity of 100Mbps, and 50ms delay. Capacities and delays are the same
in the reverse path. Packet size is 1040 bytes.

The following parameters were used in routers: β = 0.5, Δr
t = 500ms, Δa

t =
500ms. In TCP sources, we used a−1 = 4 ∗ cwnd, b−1 = 3000 for the averaging
of RTT and BaseRTT.

Fig. 1. Simulated network

The simulation results are depicted below. Figure 2 contains split ratios and
metrics (prices) for nodes 1 and 3. Figure 3 contains queueing delays for bottle-
neck links (2,4) and (3,4), and the rates of both sources in packets/second.

In the initialization process, for random reasons all nodes (1,2,3) discover first
the top route, via node 2 to destination node 4. In particular, node 3 sets its
split ratios initially to route via node 1, the longest route, and blocks the use of
link (3,4) for node 1. Therefore, initially all traffic from both sources travels on
the top route and reaches the destination through link (2,4). For about 7 seven
seconds, both TCP-FAST sources ramp up their rates, source 2 having an initial
advantage due to its smaller RTT. At that time, link (2,4) saturates and the
sources react, converging around 30 seconds to sharing the bottleneck fairly.

By 30 seconds, node 3 has completed its transfer of routing to link (3,4). This
unblocks the bottom route for node 1, and allows for source 1 to increase its
total rate, eventually filling the bottom link as well around 45 seconds. At the
same time, this allows source 2 to send more traffic through link (2,4).
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Fig. 2. Split ratios and prices for destination 4
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Fig. 3. Bottleneck queueing delays and source rates

After about 60 seconds, the system reaches an equilibrium with node 1 routing
20% of traffic from source 1 through the top path, and 80% through the bottom
path. Node 2 routes all traffic from source 2 through link (2,4). Queueing delays
(prices) at both bottlenecks equalize, so the sources with same demand curves
equalize their rates to (c1 + c2)/2 = 31.25 Mbps or 3750 packets/second.

5 Conclusions

We have implemented distributed algorithms, at sources and network routers,
which solve a distributed optimization problem, combining traffic engineering



214 E. Mallada and F. Paganini

with congestion control as proposed in [9]. The implementation is based on
queueing delay as a congestion price; routers measure local prices and exchange
information with neighbors, following a multipath variant of a distance-vector
routing protocol. Fast-TCP sources estimate this delay from their RTT mea-
surements in real time, calibrating their propagation delay through periodic
interactions with the IP layer. Our ns2 simulations over a simple network verify
the expected behavior from the theory. Future work will involve more extensive
tests and larger networks. Remaining challenges are partial deployment of this
protocol and its compatibility with IP address summarizing.
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Université Libre de Bruxelles, Belgium

2 INRIA and Lab. LIG (CNRS, INPG, UJF)
51, Av. J. Kunztmann, Montbonnot, France

Abstract. In this paper we show how dynamic brokering for batch al-
location in grids based on bi-dimensional indices can be used in practice
in computational grids, with or without knowing the sizes of the jobs.
We provide a fast algorithm (with a quadratic complexity) which can
be used off-line or even on-line to compute the index tables. We also
report numerous simulations providing numerical evidence of the great
efficiency of our index routing policy as well as its robustness with re-
spect to parameter changes. The value of information is also assessed
by comparing the performance of indexes when the sizes of the jobs are
known and when they are not known.

1 Introduction

The aim of this paper is to propose an efficient but simple routing (or meta-
scheduling, or brokering) strategy for computational grids having a central-
ized resource broker based architecture, such as EGEE (Enabling Grids for
E-sciencE [1]), GridPP [2] or Grid 5000 [3]. The functioning of such a system is
rather simple: a set of resources (clusters, . . . ) is available to a resource broker
(RB). When a user wants some work to be executed, (s)he sends a parallel job
to this resource broker, which is in charge to choose a resource, and to send (or
route) the job to the selected resource. Two cases are studied in this paper. We
consider the case where users announce the size of the job (i.e. the number of
processes composing the job) so that the broker can take its decisions accord-
ingly, and the case where the sizes of the jobs are not known a priori and follow
some general distribution. A job never waits in the RB (except for the small
time needed for choosing the resource), and is queued into the chosen servers
immediately, where it will be scheduled thanks to classical well known cluster
scheduling techniques.

The resource broker should not base its routing decisions on a static off-line
strategy, since the input traffic is usually highly dynamic (the sizes and the arrival
time of jobs are unknown and vary over a wide range of values). Therefore, most
brokering strategies use the current state of the grid to allocate incoming jobs
to resources. For instance, in EGEE [1], the routing of jobs may be based on

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 215–225, 2007.
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the current number of jobs waiting in all the queues or on the waiting times of
recent jobs having been processed.

Here, we model brokering problems in grids as Markov Decision Process
(MDP) problems. While these problems are known to be P-space hard [4] in gen-
eral, Whittle has shown that index policies are good candidates as sub-optimal
solutions to these problems [5]. Whittle indices have been used successfully in
[6] to control M/M/1 queues with breakdowns. This approach has also been
extended in various directions in [7,8,9], for example.

The goal of this paper is to show that index policies provide a valid candidate
to solve the brokering problems in grids which are seen as G/M/k/B queues and
that they can be used in practice because they very easy to compute and exhibit
very good performances. The case of M/M/k/B queues (with no batches) has
been considered in full details in a long version of this work available as a research
report [10]. Here we show how the approach can be used for batch arrivals. Most
proofs which differ only slightly from the non-batch case are only sketched here.

The first objective of this paper is to design fast algorithms to compute
the indices so that they can be used on-line (i.e. recomputed whenever ma-
jor changes occur in the system). Unlike in most previous studies, the indexes
that are used here are bi-dimensional functions: they depend of the size of the
queue as well as the size of the incoming job. The naive approach (given in the
paper) has a O(eB4K2) complexity while our most advanced algorithm has a
O((e + log(B))B2K2) complexity (here B is the buffer size , K is the maximal
size of jobs and e is the required number of precision digits). This is done by
exploiting several structural properties of our mathematical model (threshold
optimality, monotony, univocal and convex functions) and the final complexity
becomes sub-quadratic in the state space.

The second objective of this paper is to show the efficiency of our index poli-
cies, as a mathematically well founded alternative to intuitive policies such as
“Join The Shortest Queue” (JSQ), for task allocation in grids. The numerical
experiments provided in Section 4 show how well it behaves in terms of perfor-
mance, and robustness. In all our experiments, the performance (average sojourn
time) of our index based routing policy stays within 2% from the optimal policy
and is always better than all classical policies (such as JSQ). Furthermore, our
policy is very robust to parameter changes. For example, combining our index
policies computed for loads 0.5 and 0.9 is enough to achieve very good perfor-
mances (less than 2% loss) over the whole range of loads from 0 to 1. Also, a
rough approximation of the job width distribution gives excellent results.

Finally, we assess the value of information, by comparing the performances
of the multidimensional indexes used when the job sizes are known and of the
one-dimensional indexes used for unknown job sizes.

2 Index Policies for Grids

In this paper a grid computing systems is seen as an heterogeneous set of inde-
pendent clusters. All computing nodes in the same cluster are identical. In one



Grid Brokering for Batch Allocation Using Indexes 217

cluster, all processes are queued in FIFO order into one finite buffer and are
allocated to free nodes in an arbitrary fashion.

This is an approximation of the actual behavior of current grid computing
systems. The main simplifications used here are the independence between all
processes within one job (they usually are parallel processes and have depen-
dencies) and the FIFO queuing policy in each cluster (they usually have priority
and/or reservation features).

More formally, our system can be described as follows: a router gets a Poisson
stream of jobs at rate of λ. It chooses one queue amongst N , and sends the job
to the chosen queue, or reject it, if all queues are full.

A job is a set of independent processes, routed together through the same
cluster, but scheduled independently on the cluster once they are in the cluster
queue. The maximum number of processes in a job is K (K ≤ B), and the
probability for a job to be composed of k processes is denoted by Pk. The number
of processes of a job is called the job width. The average job width (

∑K
k=1 kPk)

is denoted W .
Each cluster is seen as a queue of type G/M/si/Bi/FIFO with service rate μi.
When the number of processes per job are not known at routing time, we

need a new interpretation of the buffer capacity. If the number of processes in a
queue i is higher or equal to its capacity Bi, a new job cannot be routed towards
this queue. But one job can make the number of processes become greater than
Bi. Once the number of processes is higher or equal to Bi, this number can only
go down until Bi − 1 is reached.

In addition, the following notations will be used throughout the paper.

– xi is the queue i state, or the number of processes currently present in the
queue (waiting and running). xi ∈ {0, . . . , Bi + K − 1}.

– x = {x1, . . . , xN} is the system state.
– S is the state space: S = {0, . . . , B1 + K − 1}× · · · × {0, . . . , BN + K − 1}.
– U is the action space, or the set of actions that the router can choose. An

action is either i (if the queue i is chosen), or 0 (if the action is the rejection
of a job). Rejection is only allowed when all queues are “full”. Then, U =
{1, . . . , N} ∪ 0 iff xi ≥ Bi ∀i.

In the following, we will focus on routing policies minimizing the expected
discounted workload in infinite horizon1. This can be seen as a Markov Deci-
sion Problem in discrete time after uniformization by the constant Λ = λ +
maxi∈{1,...,N} siμi, and immediate cost

∑N
i=1 ci((x

(m)
i + δ{um(x(m))=i})) where ci

is the unit cost in the i-th queue per customer.
As the cost is uniformly bounded over the state space, we will only consider

time independent routing policies. A routing policy u is a function which says
which action to take in each state. Then it is a function u : S → U .

Computing the optimal policy boils down to solving a Bellman fixed point
equation (see [11]). The problem here is that the size of the state space increases
1 A similar question without discounting can also be considered. The approach used

the rest of the paper also applies for long run average costs with minor adaptations.
These extensions will not be discussed further in this paper.
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exponentially with the number of queues. This problem, often called the “curse
of dimensionality”, is acute here. Indeed, the problem becomes too large to be
handled by modern computers as soon as N ≥ 4 (for queues of size 100).

This is why one needs to tackle the problem using a scalable approach.

2.1 Optimal Index Policies

Here is the way to construct a local cost function for each queue. We consider
each cluster (i.e. a multi-server queue) in isolation and use a free parameter R,
as a rejection cost. The first step is to construct optimal admission policy in each
queue which is of threshold type. The optimal threshold is a function Θi(R) of
the rejection cost. When the job sizes k are known, The optimal threshold also
depends on k and is denoted Θi(R, k). In the following, we will mainly focus on
the case where the job sizes are known. The equations in the unknown case are
similar (by dropping the argument k).

Then, the local cost or index for this queue is the inverse function of Θi(R, k):
Li(xi, k) = sup{R|Θi(R, k) ≤ xi}, and the policy is

u(x1, . . . , xN , k) = argminxi<Bi
{L1(x1, k), . . . , LN(xN , k)}

An arriving job of size k is then sent towards the queue which has the smallest
current local cost. If the results of the argmin is empty, the incoming job is
rejected.

In the following sections, devoted to the computation of Θ(R, k), we will focus
on one specific queue. In order to simplify our notations, the subscript i of the
queue will be dropped.

For one queue, the optimal control problem is to find the optimal control u
(accept or reject each incoming customer) in order to minimize the long run
discounted cost with initial state x0, after uniformization by this total rate Λ =
λ + maxi μisi. The α-discounted cost for the optimal policy with initial state x
will be denoted J∗(x, k).

Theorem 1. The optimal policy minimizing the α-discounted cost in infinite
horizon J∗(x, k) for one MP /M/s/B queue (or one MP /M/s/∞ queue) is of
threshold type.

This result is rather classical (see for example [11]) for the case where the size of
the jobs are unknown. In the case where J∗(x, k) actually depends on k, the proof
is similar to the unknown case, and uses induction on the number of steps of the
policy iteration. Actually, we will see later (in Lemma 2) how the thresholds for
the infinite and the finite cases are related.

2.2 Computing the Optimal Threshold

The objective of this section is to design an algorithm finding the optimal thresh-
old policy in a MP /M/s/B queue (where s is the number of servers, and B is
the queue size). When the size of an arriving job is known, a policy uθ(k) with
threshold θ(k) ∈ {0, . . . , B} is defined as follows. When a job of size k arrives
while x processes are currently present in the system (x is the queue state),
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– if x < θ(k), the new job is accepted, and every processes of this job will cost
c per time step (time between two events) spent in the system,

– otherwise (x ≥ θ(k)) the job is rejected, and costs kR (only once).

Bellman’s equation for the α-discounted cost of one queue with rejection, can be
adapted for threshold policy uθ. In the unknown size case,

J(x) = α
(

λ′ ∑
k PkJ(x + kδx<θ) + μ′ min{x, s}J(x− 1)

+(1− λ′ − μ′ min{x, s})J(x)
)

+ cx + λ′RWδx≥θ,
(1)

where J(x) is the infinite horizon α-discounted cost starting with x jobs in the
queue of policy uθ. When job sizes are known, we get the cost of uθ(k):

J(x, k) = α
(

λ′ ∑K
k′=1 Pk′J(x + kδx<θ(k), k

′) + μ′ min{x, s}J(x− 1, k)

+(1− λ′ − μ′ min{x, s})J(x, k)
)

+ cx + λ′Rkδx≥θ(k).
(2)

Equations (1) and (2) can easily be rewritten in a matrix form (For J(x, k), the
multidimensional variable is converted into one by setting X = x ·K + k − 1).
Let F and S be appropriate matrices. Then, Equations (1) and (2)can now be
written as:

J = αFJ + S. (3)

Finding the threshold θ or θ(k) which gives the smallest cost corresponds to
looking for a θ solution of the following systems, which is the same as Equations
(1) and (2) with a min on the right hand side: J = minθ∈{0,...,B}(αFJ + S) and
J = minθ∈{0,...,B}{0,...K}(αFJ + S), respectively.

We will call Θ(R) (resp. Θ(R, k)) the function which gives the optimal thresh-
old for a rejection cost R (resp. for a rejection cost R and for jobs of size k),
assuming that other parameters are constant.

Using policy iteration, one can compute the optimal policy and its cost, when
the job sizes are known. When the job sizes are not known, one only needs to
remove the argument k everywhere.

The worse case complexity is O(KB3) (because bounds are known for Θ(R, k)).
This allows us to compute the function Θ(R, k) for all k from R

+ into {0, . . . ,
B}. This function will be the base of our index I(x, k),which goes from {0, . . . , B}
× {0, . . .K} into R

+. I(x, k) is then a bi-dimensional array. I is defined as the
inverse of Θ, or, more exactly, I(x, k) gives the larger rejection cost R such as
Θ(R, k) ≤ x. Or, ∀k, I(x, k) = sup{R|Θ(R, k) ≤ x}.

3 Algorithmic Improvements and Complexity

In this section, several improvements of the algorithm used to compute Θ (and
thus I) are explained. They are mostly based on Lemmas 1 and 2. They involve
both algebraic simplifications and reductions of the problem size. The complexity
of our final algorithm is quadratic on the state space. Other techniques (not
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based on the policy iteration) could be used to compute the optimal index. One
possibility is to use the average cost equation and its derivatives, as done in
[6]. All our attempts have proved to be numerically unstable for bi-dimensional
indexes, which makes this approach unusable in practice. Other techniques based
on polytope problems [7] also have a high complexity for bi-dimensional indexes.

Here, the following lemma is helpful to bound the initial search for thresholds.

Lemma 1. Under the foregoing notations, the functions Θ(R, k) and I(x, k)
have the following properties:
i- Θ(R, k) and I(x, k) are non-decreasing in both parameters.
ii-For all R ≥ c

1−α , and all k, Θ(R, k) = B.

Proof. (sketch) Point i is a direct consequence of the structure of the cost func-
tion. As for point ii, it is direct consequence of the fact that J∗(x + k, k′) −
J∗(x, k) ≤ k c

1−α , uniformly over all values of k.

Algorithm 1 computes the threshold when the job sizes are known.

Algorithm 1. Computes the best threshold Θ(R, .) for a rejection cost R

Data: R
Result: Best thresholds for this R (Θ(R))
θ∗ ← first estimation; // θ, θ∗ and θ′ are vectors

repeat
θ ← θ∗, gain∗ ← 0;
Find Jθ, solution of LJ = R;
foreach k ∈ [1, . . . , K] do

foreach θ′(k) ∈ {0, . . . , B − k + 1} \ θ(k) do
foreach x ∈ [0, . . . , B] do

if Jθ,θ′(x, k) > Jθ(x, k) then
next θ′(k);

else
gain+ = Jθ(x, k) − Jθ,θ′(x, k);

if gain > gain∗ then
θ∗(k) = θ′(k);
gain∗ = gain;

until gain∗ < ε ;
return θ∗;

Lemma 2. Let θ∗ be the optimal threshold for a system with a queue size of
B > θ∗. Then, θ∗ is the optimal threshold for any identical system with queue
size B′ > θ∗ and B′ is the optimal threshold for any identical system with queue
size B′ ≤ θ∗.

This is a rather direct corollary of the form of the functionnal J used in the
proof of Theorem 1.
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This result will greatly help us to further improve the complexity of linear
solving calls (solving of Jθ), which represents the main cost of our algorithm. If
Θ(R, k) has been computed and if R′ < R, then Θ(R′, k) ≤ Θ(R, k). We can
then compute Θ(R′, k) as if the buffer size were B′ = Θ(R, k), which reduces the
search space for the new threshold. The same can be done for k. This method
strongly reduces the time spent in solving Jθ(x, k). Indeed, solving Jθ(x, k) goes
from a problem in O((B + K) ·K) to O((B′ + K) ·K).

In the dichotomy algorithm we will present below, we can show that in a large
majority of cases, the value of Θ(R, k) can only take 2 consecutive values, we
can then use B′ equal to the largest one.

3.1 Computing the Index Function

In order to compute the index vector I(x, k) with precision ε, one need to com-
pute Θ(R, k) for every R such that Θ(R, k) = Θ(R + ε, k)− 1. Each such R will
give us the corresponding value of the index (I(Θ(R, k)) = R). The algorithm
will be composed of two parts:

1. First, for each k, find (at least) one point on each step of Θ(R, k), meaning
that ∀x ∈ {0, ..., B}, we have a value Rx such as Θ(Rx, k) = x. This is done
by dichotomy. While we have R1 and R2 with R1 < R2 and Θ(R2, k) −
Θ(R1, k) > 2, for which we do not have any point between them, we use Θ
for some value between R1 and R2, for instance R1+R2

2 .
2. Then a second dichotomy is used to get the values of the jumps of Θ. For ev-

ery couple R1, R2 found at the previous step such as Θ(R1, k)+1 = Θ(R2, k),
we search for a value R1 < Rm < R2 such that Θ(Rm, k)+1 = Θ(Rm +ε, k).

Theorem 2. Computing the index table I with precision ε can be done in O((B+
K)K2(eB + log B)) in the worst case, where e = −log(ε).

Proof. (sketch) The first phase of the algorithm needs to identify B + 1 values
of R, one for each possible threshold.

For given R and k, computing Θ(R, k) can be done by using a dichotomy over
the values of θ in the set {0, · · · , B}. The cost for each θ corresponds to solving a
“quasi triangular” system of size smaller than B+K and has a known solution in
O((B + K) ·K) so that the complexity to get Θ(R, k) is O((B + K) ·K2 log B).
Since B values have to be computed, the overall complexity of phase one is
O((B + K)K2 log B).

As for phase 2, the dichotomy imposes to compute less than eB values Θ(R).
Each of them can be done in time O((B + K)K) because only two values for
Θ(R) are possible at this point (see the previous comments).

Hence, the overall complexity is O(eB(B + K)K2 + (B + K)K2 log B).

4 Numerical Experiments

In this section, we will present some simulation results where we compare several
routing strategies. We compare our index strategy with some classical strategies.
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The input rate varies between 0 and 100% of the total service capacity. The
plots display the ratio between the average sojourn time in the stationary regime
for a given strategy2. As stated in the previous section, several strategies have
been compared. Most of them are already available in EGEE. Here are the names
we use in the plots.

Random : Bernoulli routing (weight: μisi) JSQ (Join the Shortest Queue): Ii(x) = x

JSQ2 : Ii(x) = min(0, x − si) JSQ-mu : Ii(x) = x/(μisi)

JSQ2-mu : Ii(x) = min(0, x − si)/(μisi) Batch : “our” strategy.

JSW (Shortest Waiting time): ∀x ≤ si, Ii(x) = 1/μi and ∀x > si, Ii(x) =
x + 1

μisi
.

Each curve required between 8 and 10 hours of computations. Therefore, each
plot below required approximately 3 days of computation at 3.4 GHz. This was
however highly parallelizable, which allowed us to obtain a plot in a few hours on
a cluster. All our simulation were performed on the Grid5000 platform [3] giving
a smooth and easy access to several thousands of CPU spread across France.

4.1 Impact of Information

In order to assess the value of information, we have compared the performance of
our policies when the job sizes are known and when they are not known. The gain
for knowing the job sizes remains uniformly below 1 %, as long as K the bound
on job sizes is smaller than B/10. When K grows, the gap increases as expected
and becomes more sensible (up to 10 %). However, the computation burden of
computing bi-dimensional indexes increases sharply (several weeks over a large
cluster). In the following, all the experiments are run under the assumption that
the job sizes are unknown at routing time.

4.2 Impact of Job Width Distribution

We study here the impact of the job width distribution on the performance. As
a simple example, we have chosen a platform with 4 queues, with various sizes.
We have tried 3 job width distributions: firstly, a simple sequential distribution,
meaning with one-process jobs (Fig. 1, left). Then, a distribution where the job
widths are power of 2 up to 16 (1, 2, 4, 8, and 16), with decreasing probability
(Fig. 1, middle). And finally, we use a real job width distribution, extracted from
the DAS2 workload from the Feitelson’s Parallel Workloads Archive [12] (Fig. 1,
right).

We mainly notice that even if the comparison between metrics greatly varies,
the gain of Batch over other strategies is still between 20 and 40% in some config-
urations (except Random which is worse). Moreover, a wider distribution seems to

2 Notice that when the discounting factor is close to one and c = 1, this is very close
to the average discounted cost.
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Fig. 1. We show the same platform with several job width distributions. On the first
plot, we only have sequential jobs (non batch). On the last, we use job width distribu-
tion extracted from a real workload.

conduct to a larger gain, mainly at low load. On the right plot of Fig. 1, even the
best strategy is 20% slower than Batch at low load. This is of course not surpris-
ing, as Batch is the only strategy taking the job width distribution into account.

4.3 Robustness on Load Variations

The main practical difficulty induces by our index strategy is that it depends
on the input rate: in real systems, the input rate can vary which would require
to obtain an estimation of this new load, and to recompute our indices. This
leads to the following question: how robust is index routing with respect to to
the input rate variation ? Does an index computed for a load of 50% perform
efficiently if the actual load is 20% or 80% ?

We show on Figure 2 the behavior of a system where three different indices are
used. The first index (Batch) is the classical one, which means that this index
is computed according to the actual load. The second index (resp. Batch.4 and
Batch.15 for left and right plots of Fig. 2) is an index computed for a load
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Fig. 2. This plot shows this impact of performance if the load used in the indices
computations is not known, or not precisely known. Theses plots show that, depending
of the configuration, a incorrect knowledge of the load could have either a little or even
no impact at all.
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of ∼ 50%, and used for every load between 0 and 100%. The third one (resp
Batch.2 and Batch.27) is similar, for a load of ∼ 90%. The number following
the dot in the notation is the input rate (λ) used for the index computation.

On the first plot, it appears that the 50%-index (resp. 90%-index) is still better
or equivalent than any other classical strategies for a load varying between 0 and
70% (resp. 40% and 100%). This shows that our indices are really robust, and
that they do not require to known the exact input rate.

In the second plot, the robustness is much more important: the load (λ) used
for the computation of index seems to be of little impact; whatever the parameter
λ, Batch is better than any other strategy.

A strategy where two sets of indices I1 = {I1, . . . , IN} and I2 = {I′1, . . . , I′N}
are computed, and where the resource broker uses I1 or I2 according to an
estimation of the actual load would be very efficient in all cases.

4.4 Robustness on Job Width Distribution

In order to estimate the impact of the correctness of the job distribution knowl-
edge, we show two scenarii in Fig. 3 in which we add two curves (Batch.geom
and Batch.exp) for which the index was computed assuming the job width dis-
tribution was respectively geometrical between 1 and K, and geometrical only
for powers of two (other values have a null probability). For the two plots, we use
the same architecture (4 queues), but the job width distribution is different: the
distribution extracted from Feitelson’s archive on the left plot, with K = 64, and
a simple distribution with K = 8 in the right plot. Notice that in both cases, the
“powers of 2” distribution is a better approximation of the actual distribution.

On the first plot, the index using geometrical approximation is rather far
from the Batch curve, especially for low loads, but is still better that any other
strategy. The strategy based on “powers of two” approximation is almost indis-
tinguishable from Batch. On the second plot, both approximations are almost
indistinguishable from Batch. This shows that our policy is also very robust to
the job width distribution.
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Fig. 3. Situation where the indices were computed with an approximation of the job
width distribution. We observe very good performances, even for rough approximations.
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Abstract. Recently Gerald Ash has shown through case studies that
event dependent routing is attractive in large scale multi-service MPLS
networks. In this paper, we consider the application of Load Shared
Sequential Routing (LSSR) in MPLS networks where the load sharing
factors are updated using reinforcement learning techniques. We present
algorithms based on learning automata techniques for optimizing the
load sharing factors both from the user equilibrium and system optimum
perspectives. To overcome the computationally expensive gradient evalu-
ation associated with the Kuhn-Tucker conditions of the system optimum
problem, we derive a computationally efficient method employing shadow
prices. The proposed method for calculating the user equilibrium solu-
tion represents a computationally efficient alternative to discrete event
simulation. Numerical results are presented for the performance com-
parison of the LSSR model with the user equilibrium and the system
optimum load sharing factors in some example network topologies and
traffic demands.

1 Introduction

In the early days of packet switching much attention was given to the routing
problem. See [1] for an early survey of routing algorithms where an application of
learning techniques to packet routing in data networks was considered. The event
dependent routing method described in reference [1] can be applied to either
datagram or virtual circuit data networks, however in the case of datagram
networks the received packets can be miss ordered. With the appearance of
the Internet, destination based IP routing was widely adopted for reasons of
scalability and stability in spite of the fact that destination based routing gives
the user little control over how his/her traffic is routed. This in turn means
that traffic may be routed over congested links (paths) while at the same time
alternative less congested paths are available.

The need for better control of traffic routing, also referred to as “traffic en-
gineering”, gave rise to the MPLS standard. Multi Protocol Label Switching
(MPLS) is a connection oriented framework proposed by the IETF to improve

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 226–235, 2007.
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traffic engineering, congestion management and QoS provisioning in traditional
IP networks [2]. In this framework, constraint-based routing and label swapping
replaces the hop-by-hop destination-based routing mechanism used in traditional
IP networks. With MPLS, route selection can employ either hop by hop rout-
ing or explicit routing. In the explicit routing method, a single Label Switching
Router (LSR), usually the ingress LSR, specifies all (or some of) the hops in the
Label Switched Path (LSP). Explicit routing gives the designer the ability to
control the traffic load distribution in the network.

The algorithms proposed for LSP routing in MPLS networks are mostly state
dependent ([3]). In state dependent routing, the information about the status of
the network is flooded through the network and routing tables are updated using
this information. Event dependent routing algorithms, on the other hand, use
the observed events to update their knowledge about the status of the network.
Different event dependent routing schemes have been proposed and successfully
used in TDM networks. Reference [4] presents an event dependent routing scheme
for destination-based routing and shows the convergence with probability one of
the proposed algorithm to the set of approximate Cesaro-Wardrop equilibria. An
application of event dependent routing schemes in the MPLS networks has been
presented in [5, 6]. To the best of our knowledge, the performance of the routing
scheme studied in [5, 6] can only be derived from discrete event simulation and
there is no analytical approach for evaluating the performance of the algorithm.
In reference [7], we present an alternative event dependent routing scheme with
the application to explicit source routing in MPLS networks. The proposed al-
gorithm is based on the Load Shared Sequential Routing (LSSR) where load
sharing factors are updated using reinforcement learning techniques.

In this paper, we study the load share optimization problem both from user
and system optimization perspectives in the LSSR model and give a computa-
tionally efficient method for solving these problems. The solution approach uses
a recursion, governing the expected behavior of an ε-optimal learning automata,
to converge to the point where the Kuhn-Tucker conditions of the optimization
problem are satisfied. The application of learning automata techniques in solving
the load share optimization problem for the single class circuit-switched networks
with fully connected topology and 2-hop alternate paths has been studied in [8].
The solution approach proposed in this paper can be used in the multi-rate traffic
case with general network topology where some links may be shared among two or
more alternate paths. Numerical results are presented comparing network block-
ing probabilities obtained from the user equilibrium and the system optimum load
sharing factors in some example network topologies and traffic demands.

2 Methodology

This section briefly reviews the methodology and the algorithms that are used
in this paper to compute the user equilibrium and the system optimum load
sharing factors when LSSR is applied to route Label Switched Paths (LSPs) in
a multi-rate MPLS network.
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Consider a learning automaton with K actions and the following updating
scheme [9]:

pj(t + 1) =
{

pj(t) + G[δji − pj(t)]x(t) j = 1, .., K − 1
1−∑K−1

i=1 pi(t + 1) j = K
(1)

where at time t, the ith action is selected; δji, is Kronecher delta function and
x(t) ∈ [0, 1] is the reward associated with the selected action. In the context of
this paper, a reward is associated with a completed call attempt. In addition
to being ε-optimal [10], when the covariance between each pair (pi, pj) (σ2

pipj
=

E[pipj ]−E[pi]E[pj ]) is negligible, this learning scheme has the following expected
behavior:

E[pj(t + 1)] ≈
{

E[pj(t)][1 + G(sj(t)−∑K
k=1 sk(t)E[pk(t)])] j = 1, ..., K − 1

1−∑K−1
j=1 E[pj(t + 1)] j = K

(2)

where,

si(t) = E[x(t)|a(t) = ai].

This recursion governing the expected behavior will be used in solving opti-
mization problems described in the next sections. This methodology has been
previously employed to compute the user equilibrium and the system optimum
routing solutions in datagram networks [1]. It was shown that the recursion given
in Equation (2), has fixed points which are in one-to-one correspondence with
stable user equilibrium solutions, when the datagram network is modeled as in
Gallager’s classic paper [11]. In references [9] and [10] the same recursion was
derived to approximate the expected behavior of the action probabilities of the
cross-correlation algorithm of Equation (1) in a stationary environment under
slow learning conditions. The same cross-correlation learning algorithm and the
recursion governing its expected behavior under slow learning conditions were
applied to a variety of routing and flow control problems in data and ATM net-
works in a series of papers [12], [13] and [14]. Recently Alanyali has provided an
analysis of the behavior of distributed learning algorithms controlling a Markov
process in [15].

The present paper differs from the results previously reported in that the
network model used here is different, namely a general mesh topology supporting
multi-rate LSPs. The multi-rate performance model of Greenberg and Srikant
[16] is used where the LSPs are characterized by their Effective Bandwidth [17].

3 RL-Based Load Shared Sequential Routing

Load Shared Sequential Routing (LSSR) randomly partitions the class s traffic
load associated with origin ’o’ and destination ’d’ (λo,d,s) into n sub-streams us-
ing the set of load sharing factors (sub-stream selection probabilities),
{αo,d,s

1 , ..., αo,d,s
k }. Each sub-stream is then offered to a route tree which con-

sists of one or more alternate paths. The alternate paths of each route tree are
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Fig. 1. LSSR Model

tried sequentially. If there is not enough bandwidth available on at least one link
of one path, the request is forwarded to the next alternate path. This process is
repeated until all alternate paths in the route tree have been tried sequentially. If
all paths have been tried unsuccessfully, the request is lost and rejected from the
network. A pictorial representation of the LSSR model is provided in Figure 1.

The LSSR model imposes no restriction on the load sharing factors other than
non-negativity and

∑

k

αo,d,s
k = 1. (3)

3.1 Load Shared Sequential Routing, User Equilibrium Solution

User equilibrium can be explained in terms of Wardrop equilibrium [18]. In the
LSSR context, let λo,d,s represent the total class s traffic load between origin ’o’
and destination ’d’ and let L(αo,d,s) be the cost of allocating the traffic λo,d,s

according to the load sharing factors αo,d,s. The set of load sharing factors α is
at the Wardrop equilibrium if for each αo,d,s

i , αo,d,s
j > 0, we have Lo,d,s

i = Lo,d,s
j

and that if there exits a route tree with αo,d,s
� = 0, then Lo,d,s

i ≤ Lo,d,s
� . The load

sharing factors (α) at the Wardrop Equilibrium are the solution to the following
minimization problem:

min Z(α) =
∑

o,d,s,k

Lo,d,s
k (4)

subject to
Ko,d,s∑

k=1

αo,d,s
k = 1 (vo,d,s) (5)

αo,d,s
k ≥ 0 (uo,d,s

k ), (6)

where uo,d,s
k and vo,d,s are Lagrangian multipliers and Lo,d,s

k is defined as:

Lo,d,s
k =

∫ α
o,d,s
k

λo,d,s

0

Lo,d,s
k dα. (7)



230 G. Brunet, F. Heidari, and L.G. Mason

From the Kuhn-Tucker conditions we have

Lo,d,s
k = − vo,d,s

λo,d,s
∀ αo,d,s

k > 0. (8)

From this last condition, the user equilibrium solution is one that equalizes the
cost on all the route trees on which traffic is offered (αo,d,s

k > 0).

3.2 Load Shared Sequential Routing, System Optimization Problem
Formulation

In this case, the optimization problem has the following form:

min Z(α) =
∑

o,d,s,k

λo,d,sαo,d,s
k Lo,d,s

k (9)

subject to

Ko,d,s∑

k=1

αo,d,s
k = 1 (vo,d,s) (10)

αo,d,s
k ≥ 0 (uo,d,s

k ). (11)

From the Kuhn-Tucker (KKT ) conditions we have

∂Z

∂αo,d,s
k

= −vo,d,s ∀ αo,d,s
k > 0, (12)

which means that at the system optimum solution, for each (o, d, s), the partial
derivatives of network cost with respect to load sharing factors on all the route
trees with αo,d,s

k > 0 are equal.

3.3 The Application of Learning Automata in Solving User and
System Optimization Problems

Assume there is a cross-correlation learning automata engine, Ao,d,s, associated
with each (o, d, s) with the set of actions of Ao,d,s being the set of route trees
available for routing bandwidth requests of class s between pair (o, d). Let αo,d,s

k

be the load sharing factor associated with kth route tree of (o, d, s).
As discussed in the previous section, from KKT conditions of the user and

system optimization problems, in the optimum solution, the partial derivatives
of the cost function with respect to load sharing factors of those route trees with
load sharing factor greater than zero are equal and less than or equal the partial
derivative of the cost function with respect to load sharing factor of other route
trees.

The recursion governing the expected behavior of cross-correlation learning
automata is used for solving the optimization problems. First, the load sharing
factors are arbitrarily initialized and traffic is distributed according to these load
sharing factors over the set of route trees. The resulting blocking probabilities are
calculated using the method of [16]. The load sharing factors are then updated
using the recursion formula of Equation (2) with the following possible choices
for s parameters:
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For user optimization problem : so,d,s
k (t) = 1− Lo,d,s

k∑Ko,d,s

r=1 Lo,d,s
r

, (13)

For system optimization problem : so,d,s
k (t) = 1−

∂Z

∂αo,d,s
k∑Ko,d,s

r=1
∂Z

∂αo,d,s
r

. (14)

The traffic distribution and resulting blocking probabilities are then updated
and the process is repeated until |αo,d,s(t + 1)− αo,d,s(t)| is sufficiently small.

As seen from Equation (14), for the case of the system optimization problem,
the calculation of s parameters implies the calculation of the partial derivatives
of total blocking probability of the network with respect to each load sharing
factor. The analytical formulation for these partial derivatives is complex and
the numerical methods are subject to approximation errors which will affect the
accuracy of the final results. To overcome this drawback, we consider a reformu-
lation of the problem that leads to a more efficient approach for calculating s
parameters.

3.4 System Optimization Problem, Alternative Formulation

In this formulation, we consider two sets of auxiliary variables: the average arrival
rate for class s on link (i, j) (m = [mi,j,s]) and the class s blocking probability
of link (i, j) (B = [Bi,j,s]). The reformulated system optimization problem then
becomes:

min
α,m,B

Z(α,m,B) =
∑

o,d,s,k

λo,d,sαo,d,s
k Lo,d,s

k (15)

subject to

mi,j,s = β(α,B) (ηi,j,s) (16)
Bi,j,s = Pb(mi,j,s) (ωi,j,s) (17)

∑

k

αo,d,s
k = 1 (vo,d,s) (18)

αo,d,s
k ≥ 0 (uo,d,s

k ), (19)

where β(α,B) can be derived using the method presented in [16] and Pb(m) can
be calculated using the Kaufman-Roberts recursion method.

The Kuhn-Tucker conditions are obtained by setting the derivative of La-
grangian of the problem (H) with respect to α, m and B equal to zero. This
yields the following equations:

∂H

∂mi,j,s
= 0⇒ ηi,j,s =

S∑

r=1

ωi,j,r
∂Pb(mi,j,r)

∂mi,j,s
(20)

∂H

∂Bi,j,s
= 0⇒ ωi,j,s =

∑

p,q,s

ηp,q,s
∂βp,q,s

∂Bi,j,s
−

∑

o,d,k

λo,d,sαo,d,s
k

∂Lo,d,s
k

∂Bi,j,s
(21)
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∂H

∂αo,d,s
k

= 0⇒ vo,d,s =
∑

(i,j)∈(o,d,s,k)

ηi,j,s
∂βi,j,s

∂αo,d,s
k

− λo,d,sLo,d,s
k − uo,d,s

k (22)

αo,d,s
k uo,d,s

k = 0 αo,d,s
k ≥ 0 (23)

(i, j), (o, d) ∈ {1, ..., N}2, s = 1, ..., S, k = 1, ..., Ko,d,s

(24)

From these equations, for all route trees with αo,d,s
k > 0, the terms

go,d,s
k = Lo,d,s

k −∑
(i,j)∈(o,d,s,k) ηi,j,s

1
λo,d,s

∂βi,j,s

∂αo,d,s
k

are equal.

So if the values of go,d,s
k can be calculated at each iteration of the recursion

method discussed in the previous section, the load sharing factors can be updated
using:

so,d,s
k (t) = 1− go,d,s

k∑Ko,d,s

r=1 go,d,s
r

. (25)

To do so, the value of η(i, j, s) need to be calculated. These values can be derived
from the following compact set of equations:

{
η = Ṗbω

ω = β̇η − L̇λk

⇒ η = (β̇
−1 − Ṗb)L̇λk (26)

This set of equations models a hierarchical routing architecture where one
centralized processor would be interconnected to the learning automata associ-
ated with every (o, d, s). On a regular basis, the centralized processor collects
the network information, updates the η parameters and distributes the updated
parameters to the learning automata engines. Such a mechanism is capable of
generating and maintaining a performance level equivalent to the one expected
by the system solution. A pictorial representation of this architecture is given in
Figure 2.

Fig. 2. Hierarchical Control Architecture
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4 Numerical Results

In this section, the performance of LSSR algorithm with user and system opti-
mized load sharing factors are compared in an example 4-node network 2 different
classes of service under full sharing assumption. Here, the capacity of each link
is 150 trunks. The effective bandwidth for class 1 is equal to 1 trunk and for
class 2 is equal to 2 trunks. For each (o, d) pair, there are 5 sets of route-trees;
one with only the direct path; two with the direct path and one of the alternate
paths and two with the direct path and two other alternate paths. The order
of the alternate paths is different in the last two route-trees. The stopping con-
dition is when L1 norm of successive iterations differs by less than 10−5. The
performance comparison of user and system optimized load sharing factors with
normal traffic load (for each (o, d, s), λo,d,s = 41) and heavy traffic load (for each
(o, d, s), λo,d,s = 50) with different η updating intervals are presented in Table (1)
and Table (2) repectively.

Table 1. 4-node 2-traffic class network
under normal traffic

System/ T Update Blk. No. of
User Interval Prob. Iteration

Sys T = 1 .00152 12547
Sys T = 20 .00155 14764
Sys T = 200 .00154 14921
Sys T = 1000000 .00161 16356
User .00161 446

Table 2. 4-node 2-traffic class network
under heavy traffic

System/ T Update Blk. No. of
User Interval Prob. Iteration

Sys T = 1 .0727 2582
Sys T = 20 .0741 2150
Sys T = 200 .0784 3563
Sys T = 1000000 .0912 5327
User .1232 737

In the next set of experiments, a 9-node network topology is considered with
fully isolated maximum allocation bandwidth constraint model. As different
classes are fully isolated, we consider only one of the classes of service. For
each (o, d) pair, sets of route-trees compose of the direct path and one or two
alternate paths. The stopping condition is when the L1 norm of the load sharing
factors in successive iterations differs by less than 10−5. Here again, for the sys-
tem optimization problem, the parameter η is updated once every T iterations.
The blocking probability results for 3 different updating intervals with normal
and heavy traffic loads are summarized in Table 3 and Table 4.

As seen from the presented results, for the case of normal traffic load, the user
equilibrium and the system optimum solutions give similar network performance
while in the case of heavy traffic load, the system optimum solution gives better
performance in terms of blocking probability. Moreover, the interval between
updating η parameters has a negligible impact on the final blocking probability
of the network. This in turn means that the system optimal solution can be
obtained using a few number of updating η parameters. One should note that
for the system optimum solution, the computational cost depends on the number
of iterations and the computation cost of deriving the η parameters.
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Table 3. 9-Node Network Nominal Rate

System/ T Update Blk. No. of
User Interval Prob. Iteration

Sys T = 10 .00448 17363
Sys T = 100 .00448 19483
Sys T = 1000000 .00451 21436
User .00452 1849

Table 4. 9-Node Network Heavy Traffic

System/ T Update Blk. No. of
User Interval Prob. Iteration

Sys T = 10 .01868 8679
Sys T = 100 .01868 10376
Sys T = 1000000 .01875 12543
User .01879 2385

5 Summary and Conclusion

In this paper, an event dependent routing method based on load shared sequen-
tial routing for MPLS networks was presented and the problem of optimizing the
load sharing factors with the objective of minimizing the blocking probability
either in full sharing case or the case where MAM is used as the bandwidth con-
straint model was discussed. A new method for solving the optimization problem
both from the user and the system optimization perspectives was given.

In general, the user equilibrium and the system optimum solutions yield dif-
ferent routing solutions. Since the user solution is derived solely from local in-
formation, the resulting network blocking probability will generally be higher
than that of the system optimum solution. However, in some cases, such as the
cases studied in this report for the networks operating in nominal traffic loads,
the difference can be relatively small.

While the system solution can only be derived with the global information,
this paper has shown that it is possible to decompose the centralized optimiza-
tion process into relatively smaller sub-processes. The centralized operations are
restricted to the evaluation of the shadow prices. All other operations can be
performed through decentralized sub-processes.
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Abstract. In this paper we introduce a pricing scheme to be employed
between a group of Internet service providers (ISPs) and a customer who
wishes to initiate a packet flow from a fixed origin to a fixed destination.
The ISPs are transparent to the customer who relies on a third party
company for both the choice of the relevant ISPs and the unit flow price
negotiated. The customer pays only for that portion of the traffic, which
meets a predefined maximum tolerable total delay within the ISP net-
works. After taking in a fixed percentage of total profit, the third party
redistributes the remaining benefits to the ISPs according to a sharing
mechanism, which reflects both, the QoS the ISPs declare they will meet,
as well as their real performance. The pricing emerges as the result of a
Stackelberg game with the third party as the leader and the ISPs as the
followers.1

Keywords: Multiple Domain Internet Pricing, Game theory, Statisti-
cal Quality of Service, Stackelberg Games.

1 Introduction

With the advent of new Internet applications for which more quality guarantees
are expected from Internet service providers, existing flat rate charging schemes
have become more and more inappropriate [1]. As a result, Internet pricing is cur-
rently a very active area of research. Based on the notion of effective bandwidth,
a statistically founded tool for the evaluation of quality constrained bandwidth
requirements for certain types of traffic in data networks [2,3], as well as differ-
ent results from both cooperative and non cooperative game theory [4], various
pricing approaches have been proposed.

In many schemes, along with the basic objective of pricing which is to recover
the incurred costs, other goals have been considered among which, congestion
control and fair allocation of resource to users [2,5], admission control and QoS
provisioning [6], allocating the resource to users who value it most by selling the
service in an online auction [7,8]. As argued in [9], the profit of ISPs as major
players in Internet, has been neglected in many pricing schemes; therefore in

1 This research was supported by a strategic grant from NSERC, CANADA, grant:
STPGP269449-03.

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 236–246, 2007.
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this paper we are also interested in the interaction between ISPs and the out-
come of the non-cooperative game between them. However, our model differs
in a number of ways from that in [9]. We have assumed the case of only one
data flow that passes through designated ISPs, and the end user who initiates
the process is assumed to be willing to pay only for that portion of the traffic
that meets a specific delay bound. On the other hand, an ISP reward structure
is defined whereby each ISP obtains a share of customer payments which de-
pends on both its initially declared individual quality of service goals, as well
as on a statistical measure of how successful this ISP is in meeting the goals
in question. Furthermore, the setup here is not one of guaranteed quality of
service, but rather statistical quality of service. Such a choice was made for at
least two reasons: firstly, deterministic quality of service guarantees can be quite
wasteful in terms of bandwidth requirements. Secondly, when involving multi-
ple ISP domains, guaranteed qualities of service tend to require a high degree
of end to end coordination, and thus the complexity and overhead communi-
cations requirements of such schemes can quickly reach unmanageable levels as
network size increases. Instead here, the setup is such that the enforcement of
quality of service is an affair left as entirely internal to each independent net-
work. If a particular network complies with a high degree of success rate relative
to its declared goals, it will be rewarded accordingly. If not, it will not. This
way, the control scheme for quality enforcement can be left as decentralized as
possible.

A third party company herein referred to as TP has been introduced as a
coordinator between the end user and ISPs. In return, it receives a fixed portion
of customers payments. We adopt a Stackelberg game environment, in which
TP, is the leader, and ISPs form the group of followers.

Overprovisioning of capacities may be the solution for many network operators
to deal with delay and congestion issues, but as discussed in [2], while this
looks like the right choice in backbones of the network, it may not be so for
its metropolitan part, and even less so in the access part of the network. This
stems from the fact that overdimensioning in the latter parts requires a lot more
investment and this would raise the costs as edge nodes are approached. Based
on this observation, we have assumed that each ISP involved in our model has at
least one congestion node along the chosen route, and the imposed delay caused
by this node, dominates that of any other route link within the ISP domain. In
summary, each ISP is represented by a single bottleneck node along the chosen
route.

The organization of the paper is as follows. In Section 2, we describe our
modelling framework. In Section 3 we specify the utility functions associated
with all of the active agents. In Section 4 we present our success-rate based
pricing scheme, and we establish existence of a unique Nash equilibrium for
the ISP part of the Stackelberg game. This is followed by a set of examples
in Section 5, while Section 6 summarizes our conclusions and plans for future
work.
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2 Model Description

The proposed model involves three types of agents: a customer herein referred
to as C, TP, and a collection of ISPs to be selected by TP. In our model, C is an
end user with a potentially large volume of traffic to be sent on a regular basis
from a given destination A to a destination B, and who initiates contacts with
TP for that purpose. However, C specifies a maximum end to end tolerable
delay for those transmitted packets for which it is willing to pay a per unit
premium. We denote the maximum delay tolerated by C as Tmax. An example
of traffic type particularly relevant to the context here is VoIP. This is because
in VoIP one can sustain the high loss probabilities that may occasionally result
from the organization scheme to be proposed. Furthermore, there does already
exist market regulators in the VoIP context and they can readily be identified as
potential TPs in our model. Indeed the Telecom Decision CRTC 2005-28, which
has been set by Canadian Radio-Television and Telecommunications Commission
is a clear example of a set of regulations, upholding rather identical regulatory
framework as extant traditional phone services for VoIP [10].

Division of revenues amongst telephone companies is based on mutual agree-
ments between pairs of service providers. In the case of a large number of such
providers of different hierarchical levels e.g. trunk providers and access network
providers, the task of revenue sharing is currently performed by a third party
company. Exchanges of balances, and information about each traversing tele-
phone call between service providers are based on annual calculations. In the
current model, TP plays an enhanced role, as compared to the case of tele-
phone networks, in that a real-time information and revenue sharing mechanism
is adopted.

TP together with C, agree on an offered traffic versus unit flow price curve,
whereby offered traffic levels increase as bandwidth unit price decreases. This
curve is a form of commitment on the part of the customer that it will pay a
fixed bandwidth unit price per unit time for sending a given ultimately agreed to
traffic level, unless it can demonstrably establish failure by TP to meet the QoS
requirements at that traffic level. In the latter case, C ’s per unit time payment
is reduced by the fraction of its total traffic inadequately transmitted. As a
consequence of this arrangement, it is in C ’s best interest to constantly probe
performance by sending traffic (useful or otherwise) at the agreed to level.

TP selects a number of ISPs along the route who are willing to be solicited
in offering the service to C. At this stage, TP gathers from the candidate ISPs
the parameters which specify the rules of the game they have to play and whose
outcome will be their individual share of the income.

In the practical context, we assume that packet end to end delays, and within
ISP domains, can be monitored for performance verification. However, all opti-
mization decisions are founded on specific modelling assumptions. In the current
context, we have settled for a simple M/M/1 queueing model of each network.
We have assumed constant packet lengths, which without further loss of gener-
ality are taken to be of length unity, so that the probability of meeting the delay
requirement can be expressed as P (t ≤ Ti) = 1 − e(λ−μi)Ti , where λ is the rate
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of the source, t, μi and Ti are random delay, service rate and declared maximum
transit time in networki, respectively.

The need to calculate success probabilities in each network, stems from the
fact that we wish to reflect the customer payment mechanism on the ISPs in-
volved in the negotiation. More specifically, the fraction of total revenue ded-
icated to an ISP directly depends on the probability of meeting the declared
delay within its network. Moreover, as mentioned earlier, C pays according to
the probability that its packet reaches the destination in time; the latter prob-
ability can be derived from the probability distribution of individual network
delays.

The per unit time cost for the customer will be: Pr(t ≤ Tmax)Cv(λ)λ, where
Cv(λ) is the unit cost versus traffic λ, dependency curve , herein referred to as
the customer response curve. For convenience here, it is taken to be a decaying
exponential. Indeed, anticipating a decreasing function of demand versus price
is standard (see [9] for example). With all active agents and their declared pa-
rameters thus defined, we are ready to formulate the rules of a Stackelberg game
whose outcome is the traffic rate submitted by C to the ISPs, the corresponding
premium unit flow price paid by C, and the revenue obtained by each of the
candidate ISPs.

3 Utility Functions and Game Framework

3.1 Third Party TP

TP, is a company responsible for all negotiations with the ISPs, with the under-
standing that the negotiation process must remain transparent to the customer.
TPs unit time revenue is a fixed fraction of the total unit time payments made
by C. The utility function of TP is considered to be:

TPU (λ) = M Pr(t ≤ Tmax)Cv(λ)λ . (1)

where M ∈ [0; 1] is the fraction of total benefit reserved for TP . The only
decision variable of TP is λ, and it is chosen to maximize TP ’s revenue, or
equally total customer payments to the ISPs, so that in a formulation of the
game where ISPs cannot acquire more bandwidth, this corresponds to the social
welfare optimization problem. We also assume an upper bound λmax for the rate
of data transfer.

3.2 Service Providers

We assume each network involved in the transaction to have a certain amount
of bandwidth μi , naturally available for C ’s traffic. Furthermore, we assume
that this initial bandwidth is sufficient to insure that the maximum possible
source rate λmax can be satisfied by any of the μi’s (λ < μi ∀i). The ISPs
have the option of increasing the amount of bandwidth they dedicate to C ’s
traffic, via a specified cost of ci per unit of added bandwidth. Let Δμi be the
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added bandwidth with an upper bound Δμmax
i , so that the actual bandwidth

that network i can allocate to the flow becomes: μi + Δμi . For each potential
λ, the fraction of profit, which is not taken by TP, is assumed to be available in
its entirety to the participating ISPs. However, for each fixed λ, ISPs are pitted
against each other in a game, the rules of which will be defined in what follows.
The idea is to reflect the payment mechanisms at TP ’s level all the way down to
the ISPs. More specifically, ISPi is asked to provide a (hypothetical) maximum
delay Ti that it declares itself ready to aim at meeting. This Ti ∈ [0; T max

i ] is
very instrumental in determining ISP i’s share of total income available after
TP ’s payment, in that it is proposed that the fraction of that total allocated to
ISPi be given by:

Si =
(1 − e−(μi+Δμi−λ)Ti)

T β
i

⎡

⎣
n∑

j=1

(1− e−(μj+Δμj−λ)Tj )

T β
j

⎤

⎦
−1

, (2)

with β as a coefficient between 0 and 1 (inclusively), and n as the number of
ISPs.

Also note that, the larger the declared time, the less margin is left for other
providers to accommodate their own delays along the packet route. From that
point of view, fairness would dictate that a large declared Ti should correspond-
ingly penalize the declarer (this explains the T β

i in the denominator in (2)). The
latter penalty prevents ISPs from letting their own declared Ti’s go to infinity in
an effort to maximize their chances of success. Also, note that for an adequate
choice of β the optimal choice of declared Ti may well become the mean delay in
the network. In addition, as alluded to earlier, the ISP has the option of either
buying for a given unit price extra bandwidth, or equivalently freeing, albeit at
the cost of some loss of revenue per unit bandwidth, a given amount of band-
width, thus modulating its effective service rate μi. As a consequence ISPi, must
provide two decision variables: Ti, and the extra amount of bandwidth Δμi it
wishes to buy . Note that if we fix Δμi = 0 (no bandwidth buying allowed), it is
not difficult to see that, modulo a reward shift by an appropriate constant, the
game is equivalent to a zero-sum game. Using this allocation rule, we define the
utility function as:

ISPUi = (1 −M)Cv(λ) Pr(t ≤ T )λSi − ciΔμi . (3)

where (1 −M)Cv(λ) Pr(t ≤ T )λ represents the revenue after payment of TP,
and ci is the extra per unit bandwidth equivalent cost.

3.3 Formulation of the Game

While we have specified different agents utility functions, we have not thus far
specified the sequence in which the game is played. Given the predominant role
of TP as the main organizer, we suggest that TP be considered as the higher
level of the hierarchy within a Stackelberg game, i.e. TP is the leader. All partic-
ipating ISPs are followers, and thus, for each fixed value of customer traffic rate
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λ decided by the leader TP, we shall be looking for potential Nash equilibria.
We also assume a perfect information environment, whereby each player knows
all extra bandwidth unit buying costs, initial networks dedicated bandwidths to
C ’s traffic, as well the customer response curve. This strong assumption is made
in order to investigate the feasibility of the ideal game. However, more relaxed
versions of the game where ISP’s costs per unit bandwidth are assumed unknown
to TP as well as to other competing ISPs, are possible and indeed workable.

Having the position of the leader in this game, TP can predict the outcome
of the non-cooperative game among the followers, for any λ. By exploiting this
fact, TP can specify the customer traffic level which best suits its interests.

Remark 1. Considering the expression of ISPi’s utility function in (3), we note
that except for the share term Si, the utility does not depend on the choice of
declared maximum transit time Ti. Also for given (μi + Δμi), Ti can be selected
independently of other decision variables to maximize Si, leaving Δμi as the
unique decision variable of ISPi. Furthermore, for the special case where the
coefficient β in (2) is equal to 1, the optimum choice is ∀i, Ti = 0.

Remark 2. The fact that, at least for the β = 1 case, the optimal choices of
declared maximum network transit times Ti for the ISPs correspond to the highly
unrealistic value of zero, justifies their characterization as declared values. This
leads to a reasonable rule for sharing benefits among ISPs. Indeed, for β = 1 as
Ti goes to zero, L’Hôpital’s rule yields:

Si/Sj = (μi + Δμi − λ)/(μj + Δμj − λ) . (4)

(4) in fact indicates that customer payments after commission are shared among
ISPs in inverse proportion to the mean packet transit time in each of the net-
works. Also, it can be shown that choosing a β different from 1 is equivalent to
a sharing rule where shares become proportional to (μi + Δμi − λ)β . Thus as β
decreases, ISPs could become more reluctant to buy bandwidth.

However, more relaxed versions of the game where ISP’s costs per unit bandwidth
are assumed unknown to TP as well as to other competing ISPs, are possible
and indeed workable. In the next section, analysis is focused on the β = 1 case.
For that special case, we establish the existence of Nash Equilibrium (NE) for
the followers game corresponding to any admissible λ.

4 Properties of the Followers Game for β = 1

In the telecommunication literature the throughput of the data stream (1 −
e−(μi+Δμi−λ)Ti)λ over mean delay Ti is defined as the power factor. Thus for
β = 1 the sharing mechanism presented in (2) can be regarded as a function of
each ISP’s power factor Pi. More specifically:

Si = Pi/
n∑

j=1

Pj where: Pi = (1− e−(μi+Δμi−λ)Ti)λ/Ti. (5)
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In [11] an approach based on maximization of product of power factors to
allocate a fair division of flows to users, has been introduced. Indeed, this cor-
responds to a so-called Nash bargaining solution. Instead, in the current model,
each ISP tries to maximize its power factor and has an interest in securing a
high overall success rate in meeting end to end QoS constraints.

Theorem 1. Under an inequality detailed in Lemma 2 in Appendix, in the
Stackelberg game defined by leader utility function (1) and followers utility func-
tions (3) with β = 1, for every admissible λ set by the leader, the follower game
admits a Nash Equilibrium.

Proof. To prove the existence of NE’s we use a paraphrase of the following
theorem [4]:

Theorem 2. For each player, assuming the sets of decision variables are closed,
bounded and convex, and assuming that each player’s utility function is contin-
uous in all decision variables associated with all players, and strictly concave
in the entries associated with its own decision variables, for every admissible
combination of decisions of other players, the associated n-person nonzero-sum
game admits a Nash Equilibrium in pure strategies.

The theorem above can be easily shown to hold if strict concavity is replaced
by the assumption of existence of a unique maximizer for each player’s utility
function for arbitrary decisions made by other players. Existence of a unique
maximizer is satisfied, provided utility functions can be shown to be strictly
log concave in their own decision variables. See Appendix for the proof. Since,
Δμi ∈ [0; Δμmax

i ], the set of decision variables are both convex and compact.
The continuity of utility functions on the admissible decision variable set is also
obvious. Therefore a Nash Equilibrium exists. ��

5 Numerical Results for a Two ISP Game

We consider the case of two competing ISPs and associate arbitrary bandwidth
unit costs to them. The inputs are: μ1 = 1.1 , μ2 = 1.2 packet/ms, Cv(λ) =
e−(λ/0.75), λmax = 1 packet/ms, M = 20%, Tmax = 6 ms, Δμ1, Δμ2 ∈ [0; 1]
and c1 = 0.075, c2 = 0.055. Although, a mathematical proof of the existence of

Table 1. Simulation results of two competitive ISPs for β = 1 and β = 0.5

β = 1 β = 0.5

Optimal λ(packet/ms) 0.750 0.708
(Δμ1, Δμ2) at NE (packet/ms) (0.442,0.603) (0.275,0.360)

(T1, T2) at NE (ms) (0,0) (1.88,1.47)
(ISPU1 , ISPU2) at NE (0.0588,0.0891) (0.0701,0.0961)

TPU at NE 0.0536 0.0517
Pr(t ≤ Tmax) % 97.06 93.75
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Fig. 1. Left: TP ’s utility versus the rate of transfer for β = 1 and β = 0.5, Right: Δμ1

and Δμ2 at Nash equilibria for β = 1 and β = 0.5

Nash equilibria for values of β other than 1, has not been established as yet, we
numerically investigate the two cases of β = 1 and β = 0.5. Simulation results
are shown in Table 1 and Fig.1. From Table 1, one sees that when β changes
from 1 to 0.5, both ISP utilities increase, but more so for the ISP with less
initial bandwidth. This comes at the price of decreasing the incentives of ISPs
in buying more bandwidth. This in turn lowers the QoS to the customer who
has to contend with a lower probability of success.

6 Conclusion and Future Work

Along with the growth of VoIP and other delay sensitive Internet applications,
pricing and accounting of the new services, demand new techniques and methods
to better reflect each provider’s performance. In this article we have proposed a
scheme for rewarding Internet provider companies, which can provide low delay
communications. However, no performance guarantees are given.

The global end to end performance (or equivalently the probability of meeting
total delay requirements) is a result of all agents efforts to cut transit time in
their own networks. This points to the importance of fair revenue sharing rules
between ISPs. To deal with this issue we have investigated a class of sharing rules,
parameterized by the β variable. Setting β at a value less than 1, tends to reduce
the financial advantage that a given ISP gets from an increase in bandwidth
relative to other ISP’s along the route. While this results in lower QoS, it can
help offset unfair competitive advantages enjoyed by some ISP’s along the route.
Finding the β that makes declared transit times equal to mean transit times,
and existence and uniqueness of NE in the followers game for β �= 0, are other
future areas of investigation. Also in the future we will consider repeated forms
of the game to account for the possibility of imperfect information, and online
utility parameter estimation. Finally ISPs along the route could be divided into



244 S. Saberi, R.P. Malhamé, and L.G. Mason

subgroups in which competition is deemed fairer, insofar as the cost of acquiring
bandwidth is concerned.
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Appendix

Lemma 1. The global success probability function Pr(t ≤ Tmax) is strictly con-
cave with respect to each ISP decision variable Δμi, regardless of Δμj , j �= i.

Proof. The probability density function (pdf) of waiting time t in a simple
M/M/1 queue is [12] : g(t, x) = xe−xt. where x = μ + Δμ − λ. The total delay
T that is imposed on each packet, is the sum of individual delays within each
ISP’s network. Thus, the pdf of T (f(T, X)), is the result of a convolution of all
component pdf’s.

f (T, X) = g(t1, x1) ∗ g(t2, x2) ∗ · · · ∗ g(tn, xn) where: X = [x1, x2, · · · , xn] . (6)

Defining F (T, X) as the probability distribution function (PDF) of T , and X−i =
[x1, . . . , xi−1, xi+1, · · · , xn], the pdf of total transit time when the time spent in
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ISPi is excluded, can be defined as: h−i (T, X−i) = g(t1, x1) ∗ · · · ∗ g(ti−1, xi−1) ∗
g(ti+1, xi+1) ∗ · · · ∗ g(tn, xn) > 0

The probability that the total packet delay be less than Tmax is given by:

F (Tmax, X) =

Tmax∫

0

h−i (t, X−i) ∗ g(t, xi)dt =

Tmax∫

0

t∫

0

h−i(τ, X−i)g(t− τ, xi)dτdt .

(7)
Using Fubini’s theorem to change the order of integration in (7), we will have:

F (Tmax, X) =

Tmax∫

0

Tmax∫

τ

(g(t− τ, xi)dt )h−i (τ, X−i) dτ , (8)

where G(x, t) is the PDF of g(x, t). Our goal is to show that ∀X−i,
∂2F
∂x2

i
< 0.

Using Lebesgue’s dominated convergence, the differentiation can be carried
across the integral:

∂2F

∂x2
i

=

Tmax∫

0

h−i(τ, X−i)
∂2

∂x2
i

G(Tmax − τ, xi)dτ . (9)

Note that ∂2

∂x2
i
G(Tmax − τ, xi) = −(Tmax − τ)2e−(xi)(Tmax−τ) < 0 and h−i > 0;

hence (9) is always negative, and as a result the global success probability is
strictly concave in xi or equally in Δμi. ��
Lemma 2. For any admissible values of decision variables X−i, and assuming
the following threshold for the total cost paid by the customer:

AF (xi, X−i, Tmax) > max{ci}
n∑

j=1

xj , where: A = (1 −M)Cv(λ)λ, (10)

ISPUi(xi, X−i) has a unique maximizer with respect to xi.

Proof. Our goal is to show that:

ISPUi(xi, X−i) =
xi

n∑
j=1

xj

AF (xi, X−i, Tmax)− ci(xi − μi + λ) , (11)

always admits a unique maximizer. In Lemma 1, the strict concavity of
F (xi, X−i, Tmax), with respect to xi was established. On the other hand the

function −ci

n∑
j=1

xj is a linear function in xi, thus the function:

AF (xi, X−i, Tmax)− ci

n∑

j=1

xj . (12)
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is also strictly concave in xi. ISPUi is assumed to have positive value for all
ISPs and as a result, (12) is always positive. Assumption (10) ensures a positive
value for (12) for all ISPs. Using Mangasarian’s theorem [13], the log of (12) is a
strictly concave function in xi, and (12) will be strictly log concave. Furthermore

xi(
n∑

j=1

xj)−1 is also a strictly log concave function in xi. Since log concavity is

preserved under multiplication, and in view of the strictly increasing nature of
the log function, the utility function in (11) has a unique maximizer in xi. ��
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Abstract. Agents competing in a network game typically prefer the
least expensive route to their destinations. However, identifying such a
route can be difficult when faced with uncertain cost estimates. We in-
troduce a novel solution concept called robust Wardrop equilibria (RWE)
that takes into account these uncertainties. Our approach, which gen-
eralizes the traditional Wardrop equilibrium, considers that each agent
uses distribution-free robust optimization to take the uncertainty into
account. By presenting a nonlinear complementary problem that cap-
tures this user behavior, we show that RWE always exist and provide
an efficient algorithm based on column generation to compute them. In
addition, we present computational results that indicate that RWE are
more stable than their nominal counterparts because they reduce the
regret experienced by agents.

Keywords: Network Games, Wardrop Equilibrium, Robust Optimiza-
tion, Robust Shortest Path, Robust Game Theory.

1 Introduction

Network games model the interaction between agents who select routes to go
from their origins to their destinations. The most common applications can be
found in modeling telecommunication, transportation, and logistic systems. Al-
though in some cases decisions are dictated by a system manager, most often
agents select routes on their own, giving rise to a competition for the network re-
sources. It is typically assumed that agents are independent and wish to optimize
some individual performance measure—such as utility, delay, cost, or profit—
until they all collectively achieve an equilibrium situation in which no agent has
any incentive to deviate. Realistically, performance measures are rarely known
exactly prior to making a decision. Agents may have estimates of these per-
formance measures based on past experience, but even if all decisions could be
accurately forecasted, there could still be external factors that create uncertainty.
A way to resolve this deficiency is to consider an imperfect information game
in which actual performance measures can vary from the deterministic nominal
values. This allows agents to take the uncertainty into account at the time of
making their decisions.
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This article generalizes the notion of Wardrop equilibria by proposing a solu-
tion concept for network games with uncertain performance measures in which
each agent solves a robust optimization problem. In network games, cost func-
tions (also known as latency, link-performance or congestion functions) that
estimate the cost of using a link create interdependencies between agents’ deci-
sions. We decompose these costs into two terms: a nominal term that depends on
decisions made by agents, and an error term which accounts for random effects
not modeled directly. In the context of telecommunication networks, the error
term can be due to defective equipment, noise, interference, or signal degrada-
tion, while in the context of transportation, it can be caused by accidents, traffic
signals, weather or varying traffic conditions.

As agents are typically rationally bounded, we do not assume that they know
(or can make use of) the distribution of errors. We only assume that they know
the support for every link, which is given by the maximum deviation from the
nominal cost. This simple uncertainty model only requires the estimation of a
single parameter per link. We assume that all agents use robust optimization to
solve their problems with uncertain information, which leads to an outcome that
we call a robust Wardrop equilibrium (RWE). Robust optimization has become a
popular paradigm in mathematical programming, gaining a wide acceptance in a
number of applications such as portfolio optimization, supply chain management,
and network design, to name a few. This paradigm addresses optimization prob-
lems with uncertain parameters by finding a solution that has optimal worst-case
cost. Alternative methods assume that uncertain elements have known distribu-
tions, require the ability to sample from a distribution, represent the uncertainty
through scenarios that may lead to large-scale problems, or use simple uncer-
tainty models such as only considering expectations. The robust optimization
approach represents the uncertainty by considering that the uncertain param-
eters belong to a bounded convex set. Such sets can represent the estimation
confidence intervals of the uncertain parameters and also model interactions or
correlations between them. Intuitively, these sets should prohibit all parameters
from taking their worst-case values simultaneously since that event is extremely
unlikely. Indeed, although we take a worst-case perspective, to avoid being overly
pessimistic, we omit unlikely situations where a large number of links encounter
large deviations from their nominal costs.

Main Contributions and Roadmap. This paper proposes a novel model and
a solution concept for network games that incorporate uncertainty in forecasts
of costs. The model proposed is such that there always exists an equilibrium for
the network game and, moreover, it is unique when cost functions are strongly
monotone. We present a computational procedure for the solution concept that
puts together several existing pieces: we use the framework of nonlinear com-
plementary problems [1], a column generation algorithm for nonadditive cost
functions [12], and the robust shortest path problem [7]. Our computational re-
sults show that RWE are closer to an equilibrium with respect to the realized
costs than the nominal counterpart. In other words, RWE reduces the regret
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that players experience after the uncertainty is revealed, which makes it a very
appealing solution concept.

The paper is organized as follows. Section 2 defines a robust Wardrop equilib-
rium and shows its existence. In Section 3, we discuss an efficient column gen-
eration algorithm to find RWE. Section 4 presents computational results that
compare the quality of robust Wardrop equilibria to equilibria that disregard
the uncertainty. Finally, we present our conclusions in Section 5.

Related Work. Our model generalizes the traditional concept of a Wardrop
equilibrium of network games. Wardrop postulated that users in a transporta-
tion network select routes of minimal cost [24]. Wardrop equilibria and many
extensions have since become widely used by practitioners; see [3, 22]. Most net-
work models developed to date assume that delays can be predicted accurately.
However, it has been recognized that this is not necessarily the case in practice
[20, 19]. We propose an approach in which users do not know the distributions
of errors and select routes by solving robust optimization problems.

The robust optimization approach was introduced by [6] and provides a so-
lution with the best objective value for the worst-case scenario. An attractive
feature of a robust solution is that it behaves well for all likely uncertainty. In
addition, in many settings finding this solution is no harder than solving the
deterministic problem. Robust optimization has provided solutions that are in-
sensitive to the uncertainty and thus efficient in practice to problems arising in
diverse applications [5, 10, 13, 7].

Game theorists have long considered that players may not have complete infor-
mation at the time of making their decisions. Unknown information is modeled
with probability distributions, and players compute their expected payoffs using
them [14, 15]. A shortcoming of this model is that it is not obvious how players
can estimate the prior distribution. A few recent papers have explored the ap-
plication of robust optimization to game theory. [16] characterizes robust Nash
equilibria in simple games as solutions to a second-order cone complementarity
problem. [2] also considers robust games and proves that robust Nash equilibria
always exist. These articles, however, consider finite number of players and do
not concentrate on robust equilibria in network settings.

Finally, there are transportation models that consider a different type of un-
certainty. Stochastic user equilibria incorporate uncertainty from variations in
the perception of costs by different users [9, 8]. This definition assumes that
costs are well determined but different users extract different utility from it.
Basically, the difference is that there is one realization of the random variable
for each user as opposed to the same realization for all users. This approach and
ours are complementary to each other, and both sources of uncertainty could be
modeled together.

2 Definition and Existence of RWE

We consider a directed graph G = (N, A) together with a set of origin-destination
(OD) pairs K ⊆ N ×N . For each terminal pair k = (sk, tk) ∈ K, let Pk be the
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set of directed (simple) paths in G from sk to tk, and let dk > 0 be the de-
mand rate associated with commodity k. We refer to the set of all paths by
P :=

⋃
k∈K Pk. A feasible flow f assigns a nonnegative and possibly fractional

value fP to every path P ∈ P such that
∑

P∈Pk
fP = dk for all k ∈ K. The

total flow along arc a ∈ A can be easily computed by summing over paths:
fa :=

∑
a∈Q∈P fQ. Whether we refer to an arc- or path-based flow will be

clear from the subscript and context. The cost of each arc a is separated in
two components: a deterministic load-dependent nominal value and an addi-
tive random value. The nominal value is expressed by the nonseparable function
�a : R

A
�0 → R�0, assumed to be positive, continuous and strictly monotone. To

model uncertainty, we consider an additive deviation from the nominal value
given by Zaγa, where Za is random variable with support in [0, 1] and γa is an
upper bound on the possible deviation from the nominal value. We assume that
users do not know the distribution of Za; they only have information about γa.
The actual cost on each arc a is, therefore, �a(f)+zaγa, where za is a realization
of Za.1

Congestion gives rise to competition among users. The resulting flow is given
by the solution to a nonatomic network game in which there are an infinite
number of players who control an infinitesimal amount of demand and seek the
path with minimum cost. The novel element is that users use robust optimization
and take robust shortest paths [7]. As it is unlikely that extremely high costs are
realized in many arcs, we give each user an uncertainty budget of Γ to constrain
the total deviation from the nominal cost. (Note that the model extends directly
to more general cases such as an uncertainty budget that depends on the user
type.) Each user seeks the shortest path considering the possibility of facing some
deviations from the nominal costs. In other words, a user traveling between OD
pair k selects the path that has the best worst-case cost:

min
P∈Pk

max
{ ∑

a∈P

(�a(f) + zaγa) :
∑

a∈P

za � Γ, 0 � za � 1
}
, (1)

where f is the flow that encodes the collective decisions made by all users. We let
the nominal cost of a path P ∈ P under a given flow f be �P (f) :=

∑
a∈P �a(f),

and the maximum deviation from it be γΓ
P := max

{ ∑
a∈P zaγa :

∑
a∈P za � Γ,

0 � za � 1
}

. With these definitions, (1) can be expressed as finding the path
P ∈ Pk that minimizes �P (f) + γΓ

P .
Wardrop postulated that users in a network game select routes of minimal

cost [24]. This leads to the Wardrop equilibrium, under which users do not have
an incentive to deviate because all selected shortest paths. We generalize this
solution concept by incorporating the uncertain cost to the model. The following
definition states that a robust Wardrop equilibrium optimizes the users’ objective
introduced above for all users simultaneously.

1 Note that all users will experience the same cost. This is in contrast to stochastic
user equilibrium models, where each user extracts a different utility from the same
travel time requiring one realization of the random variable for each user.
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Definition 1. A flow f is a robust Wardrop equilibrium (RWE) if and only if

�P (f) + γΓ
P � �Q(f) + γΓ

Q for all P, Q ∈ Pk, k ∈ K with fP > 0 .

In the case of Wardrop equilibrium, [1] showed that the equilibrium condition
can be expressed as a nonlinear complementarity problem (NCP) in the space
of arc-flows. For the robust case, this can also be done, although the difference
is that we have to consider a path formulation because maximum deviations
γΓ

P depend on the whole path. The following proposition, whose proof follows
from results for path formulations of NCPs in [1], characterizes a RWE. The
complementarity condition is the key element of this formulation as it says that
paths can only route flow if they are shortest with respect to the users’ objective.

Proposition 2. A flow f is a RWE if and only if it solves

0 � fP ⊥ �P (f) + γΓ
P − uk � 0 for all P ∈ Pk, k ∈ K , (2)

where the notation ⊥ means that at least one of the two constraints on either
side must be tight, and the free variable uk ∈ R represents the minimal objective
function values for the users’ robust objective. Moreover, a RWE always exists,
and it is unique when functions �a are strictly increasing.

In the case of separable functions �a(·) for which the cost on an arc a ∈ A
depends only on the flow fa on the same arc, the robust Wardrop equilibrium
problem can be cast as a convex optimization problem with path variables (see,
e.g., [3] for a background on potential functions).

3 A Column Generation Algorithm for Computing RWE

A central difficulty in computing a RWE is that the users’ objective function is
not separable. Hence, arc formulations are unsuitable and we have to resort to
path variables and the NCP shown in (2). This section outlines an algorithm
that uses a column generation procedure. We follow the approach of [12], which
studied a column generation algorithm for solving NCPs arising from network
equilibrium problems with non-additive costs.

The algorithm maintains an active set of paths P ′ = ∪k∈KP ′
k that it works

with, where P ′
k ⊆ Pk. Players are restricted to selecting paths in that set. At

each step the algorithm solves a problem similar to (2), referred to as the master
problem, and gets a restricted equilibrium solution. This consists on finding a
flow f and vector u of minimum costs such that 0 � fP ⊥ �P (f) + γΓ

P −uk � 0
for all P ∈ P ′

k, k ∈ K. If f is also at equilibrium over the complete set of paths
P, we can stop; otherwise we add more paths to P ′. This happens when there is
no path in P \P ′ that is shorter than uk for the objective induced by f . In other
words, we solve the following shortest path problem with non-additive costs (but
linear when formulated in terms of paths), which we refer to by SP (f):

v(f) := min
{ ∑

P∈P

(
�P (f)+γΓ

P

)
xP :

∑

P∈Pk

xP =dk for k ∈ K, (x)P∈P � 0
}
. (3)
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This problem is easily solved because it decomposes in independent robust short-
est path problems for each OD pair. The robust shortest path problem, which
was first studied by [7], can be solved by calling a regular shortest path routine
m times. The following proposition provides a restatement of the termination
condition. Its proof can be found in the full version of this article [21].

Proposition 3. A flow f∗ is a RWE if and only if f∗ is an optimal solution to
SP (f∗), or equivalently, v(f∗) =

∑
P∈P

(
�P (f∗) + γΓ

P

)
f∗

P .

Note that if f∗ is the flow found by solving the master problem, it can be ex-
tended to a full flow in P by setting f∗

P = 0 for all P ∈ P\P ′. Then, by summing
only over P ′, the condition of Prop. 3 becomes v(f∗) =

∑
P∈P′

(
�P (f∗) + γΓ

P

)
f∗

P ,
which is what we use in the algorithm. We are ready to state the full algorithm.

Algorithm 1. Column Generation

1: Initialize: Add arbitrary paths to P ′ (at least one per OD pair).
2: Set f∗ = 0 and v(f∗) = −∞.
3: while v(f∗) <

∑
P ∈P′

(
�P (f∗) + γΓ

P

)
f∗

P do
4: Solve the master NCP. Let f∗ be the optimal solution.
5: Solve Problem SP (f∗). Let x∗ be the optimal solution and v(f∗) be its value.
6: Add paths used in x∗ to P ′.
7: stop. The flow f∗ is a RWE.

This algorithm finishes in finite time, since in the process of checking whether
the candidate flow f∗ is a global solution or not, we identify at least one new
path to add to the active set P ′. Hence, in the worst case we iterate until P ′ = P ,
in which case (2) and the master problem would be identical. It is important
to note that, in general, the column generation algorithm converges in a small
number of iterations and it does not enumerate all paths, as it succeeds in quickly
identifying the typically small number of paths used in the equilibrium solution.

4 Evaluation of RWE

In this section we present computational experiments that compare RWE with
the standard Wardrop equilibria that assumes deterministic costs. For brevity,
we refer to the latter as nominal equilibria. Our main goal is to show that RWE
are an attractive alternative for networks with cost uncertainties.

We performed extensive computational experiments with problems ranging
from small to moderately sized, for various uncertainty sets. All instances have
separable cost functions because in that case the master problem reduces to a
convex optimization problem, which is easier to solve. We use AMPL [11] to
implement the column generation procedure described by Algorithm 1, LOQO
[23] to solve the master problem, and CPLEX 9.1 [17] to solve the robust shortest
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path problem.2 Due to lack of space, we only describe the results corresponding
to Sioux Falls, which is a well-studied network in the transportation literature
that is normally used to test various equilibrium concepts and algorithms to
compute them. The outcome of the other experiments can be found in the full
version of this article [21].

Albeit unknown to users, in practice there must exist random variables for
each deviation Za from the nominal cost on arc a ∈ A. For simplicity, we as-
sume that each Za is independently and uniformly distributed on the range
[0, γa]; similar results are obtained for other distributions. Nevertheless, due to
the users and planners’ bounded rationality and limited resources, they do not
know these distributions, they just know the support. We use Monte Carlo sim-
ulation to evaluate different solutions. For a given flow f , we obtain an empirical
distribution of the cost faced by users by drawing random numbers za for the
actual deviation of cost Za. Note that there are two sources of randomness that
contribute to the empirical distribution: a user of OD pair k ∈ K selects a path
P ∈ Pk with probability fP /dk, and the cost faced by a user that selected path
P is

∑
a∈P (�a(fa) + zaγa).

We evaluate solutions by computing their distance to an equilibrium under the
realized costs on the network. Following [18], we measure that distance with the
unfairness of the flow, defined as the maximum over k ∈ K of the ratio between
the largest and the smallest cost for users of OD pair k. The unfairness thus
measures how much users regret the decisions they made. Note that in general
the unfairness is strictly greater than one for any solution as users will always
suffer from some variability in the experienced costs because of uncertainty.3

A flow with minimal unfairness is more attractive as an equilibrium solution
because users’ costs are closer to being constant. To avoid the influence of small
amounts of flow that may take extreme values possibly due to numerical issues
with the nonlinear optimization problem, the computational study computes the
unfairness with the 95th and the 5th percentile of the empirical distribution of
costs instead of the maximum and minimum. When talking about a particular
user, its unfairness is defined as the ratio of its actual cost to the smallest cost
among all users.

Sioux Falls with Simplified Demands. To benchmark the robust equilibrium
solutions, we use a simplified version of the Sioux Falls instance, in which we
only consider 5 OD pairs. The purpose of this simplified example is to be able to
analyze the solutions in detail to develop insights for the trade-offs and benefits
of robust equilibria. The complete version of the article also presents results for
the original Sioux Falls instance [21].

Since the Sioux Falls instance that is publicly available does not contain
uncertainty parameters [4], and considering that longer links tend to be more

2 The bottleneck of the computation is solving the master problem so we do not expect
significant changes in the running times had we implemented the more efficient
algorithm to solve the robust shortest path problem described in [7].

3 In other words, an ex-post equilibrium—a flow that is at equilibrium for all realiza-
tion of uncertainty—does not exist.
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Fig. 1. Probability distribution functions of cost for different values of Γ . Each graph
depicts a different OD pair.

uncertain, we created initial parameters γa proportional to the free-flow cost.
Next, we modified those initial values depending on the proximity to the core of
the network. In the context of transportation networks, the downtown area of
a city is more congested because more cars use metered parking, enter and exit
parking lots, look for parking places, there are more cabs that stop or circulate
slowly, etc. We can thus argue that the cost of a link close to downtown tends to
be more uncertain than in the periphery. We designated an area of the network
as downtown, and assigned a high value of γa to arcs inside it, and medium
values to arcs in the proximity with the intention of modeling a transition area.

Comparing the RWE and the nominal equilibrium, RWE with larger values of
Γ tend to make more use of arcs in the periphery as they have low uncertainty
while less flow is routed along arcs close to the downtown area. Fig. 1 summarizes
these flows by showing the cumulative probability distributions of total cost for
3 representative OD pairs. Cost distributions for robust solutions are steeper for
all OD pairs, meaning that they have less variability and are invariably fairer
than their nominal counterparts. Distributions of robust solutions do not always
dominate the distribution of a nominal equilibrium, but that is not a cause of
concern because it is well known that equilibria need not be efficient.

Figure 2 concentrates on the unfairness of RWE. The graph on the left shows
the unfairness corresponding to users of the five OD pairs. The graph is piecewise
constant because as all users of the same OD pair are indistinguishable, they are
all subject to the same unfairness. Different series correspond to different values
of Γ , and users are sorted to make the curves nondecreasing. This means that
users in each curve are not in one-to-one correspondence. On the right graph, we
plot the improvement in unfairness of a robust equilibrium with respect to the
nominal equilibrium. To compute it, we subtract one from each unfairness value
because an unfairness value of one corresponds to a true equilibrium and is a
lower bound. The maximum improvement possible is 100%, which occurs when
the improved instance is at equilibrium with respect to the experienced costs.
Because improvements are positive everywhere, all robust equilibria are better
than their nominal counterpart. For the majority of users, solutions with higher
Γ are better; moreover, for more than two thirds of the users, the improvement
in unfairness with respect to the nominal equilibrium is more than 40% when
Γ = 5.
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Fig. 2. Unfairness of equilibria. On the left, we plot the unfairness experienced by
the users. On the right, we plot the unfairness improvement of robust equilibria. Both
graphs include curves for different values of Γ , and users for each curve are sorted
independently by increasing value of unfairness.

5 Conclusions

Our computational study has indicated that robust equilibria are indeed more
fair than nominal ones, which is reflected in the reduced variability of costs com-
puted by Monte Carlo simulations. This implies that using a robust optimization
approach seems to be a better model of user behavior than one that ignores un-
certainty completely. Indeed, this allows users to factor the variability in their
plans to obtain an increase on the accuracy of the cost estimates before starting
their trips. In the full version of this paper, we also provide results for a large
instance called Friedrichshain [18]. This shows that our algorithm scales well
when the instance size grows and that the conclusions remain valid for larger
realistic instances.

We remark that the solution concept introduced here is valid for more general
models, such as nonatomic congestion games or users with varying degrees of
risk-aversion. Extending the solution concept presented here to atomic games,
elastic or stochastic demands, and uncertainties that depend on user behavior is
a matter of future work.

Acknowledgments. The authors are grateful to Michele Aghassi, whose con-
structive comments helped to improve this paper, and to one anonymous referee
for suggesting the convex optimization formulation of RWE.
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[18] O. Jahn, R. H. Möhring, A. S. Schulz, and N. E. Stier-Moses. System-optimal rout-

ing of traffic flows with user constraints in networks with congestion. Operations
Research, 53:600–616, 2005.

[19] H. Liu, X. Ban, B. Ran, and P. Mirchandani. An analytical dynamic traffic as-
signment model with stochastic network and travelers perceptions. Transportation
Research Record, 1783:125–133, 2002.

[20] P. B. Mirchandani and H. Soroush. Generalized traffic equilibrium with proba-
bilistic travel times and perceptions. Transportation Science, 21:133–152, 1987.
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Abstract. Using the inherent relation between price and demand, a
usage-based pricing mechanism can be an efficient tool for controlling
the usage of scarce resource like bandwidth in access networks and wire-
less communication, where there is big competition between users. I pro-
pose here to describe my contributions in this field of network pricing
and particularly dealing with hierarchical game. This kind of multi-level
game is well adapted for optimizing the system manager’s decision tak-
ing into account the follower game between users. We propose the use of
hierarchical games for studying different networking scenarios : optimal
scheduling in a DiffServ router and uplink transmissions in a CDMA cell.

Keywords: hierarchical game, pricing, queueing theory.

1 Introduction

Optimization of protocols parameters in networking applications induce differ-
ent behavior of users. In a context of usage-based pricing, in order to control
system usage and also to optimize provider’s revenue, the decision of the access
price has a big influence on the user’s behavior(for a thorough overview of pric-
ing issues in telecommunication networks, see e.g.[7]). One way of studying such
bi-level systems is the Hierarchical Games [28] approach. In this paper, we con-
sider a game model based on a Stackelberg Games for the study of networking
systems like an Ingress DiffServ router and an access point using CMDA access
mechanism.

A Stackelberg game is a particular case of a hierarchical game with 2 players,
where one is the leader and the other one is the follower. This kind of game
has been used in [27] for studying a revenue maximization problem taking into
account a non-cooperative flow control game with finite number of users. In our
formulation, the number of users is not fixed and we propose a condition for
each user to leave or join the system based on his satisfaction.

2 Model

We consider a system with M class of users. For each class i = 1, . . . , M , each user
sends its traffic with a constant rate λi. The access price is pi. When the system

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 257–265, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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manager sets his parameters (access price in our context) and the competition
between users has a stable point (an equilibrium), the revenue of the system
manager is expressed by:

R(p1, p2, . . . , pM ) =
M∑

i=1

λiN
∗
i pi, (1)

where N∗
i is the number of users of class i at equilibrium in the system.

2.1 User Decision

Assume an infinite population of heterogeneous potential users. They differ from
their sensitivity to their perceived quality of service (QoS). We consider that the
main QoS parameter is the mean packet delay IED. The utility for a class i user
depends not only on the mean packet delay IEDi, but also on the price per packet
pi, in the following way:

ui(IEDi) = fi(IEDi)− pi. (2)

We consider, as proposed in [8], that each user will join (leave) the system if
its utility is positive (negative). Hence, we can model the competition between
each users as a competition (non-cooperative game) between each class of users.
Indeed, each (super-)users i ∈ {1, . . . , M} wants to maximize the following utility
function :

Ui(N) = Ni1lui≥0,

with N = (N1, N2, . . . , NM ) the vector of the number of users of each class.

2.2 System Manager Decision

The leader’s objective is to maximize his revenue. Then he has to solve the
following optimization problem:

max
p

R(p),

where p = (p1, p2, . . . , pM ). The objective function described in Equation (1) de-
pends on the Nash equilibrium N∗ of the follower’s non-cooperative game. Then,
before optimizing his objective function, the leader has to compute the Nash
Equilibrium N∗ depending on his decision parameters. This kind of problem has
been explored in transport networks and is called bi-level optimization [10,11].

We propose in the following sections to apply this hierarchical game model
for designing optimal mechanisms in communication networks. First, we study
an optimal pricing and scheduling mechanism in a wired network with service
differentiation and second, we propose an optimal power and pricing mechanism
in a wireless CDMA network.
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3 Optimal Pricing and Scheduling

The notion of service differentiation is an important key for providing QoS in
communication networks and has been proposed as the key concept for designing
the DiffServ architecture. The term “service differentiation” usually carries the
implicit meaning of offering enhanced services.

3.1 Less-Than-Best Effort Services

Less-than-best-effort (LBE) has been proposed as a service for carrying non-
critical traffic. Some examples of application scenarios [1] where a LBE service
may prove useful are:

– content mirroring and news distribution; new distributed applications that
can take advantage of spare network capacity;

– non-time-critical, bulk-data transfer based on TCP;
– isolating production traffic from test traffic; isolating mission-critical traffic

from other kinds of production traffic that may be disruptive (e.g., traffic
generated from a student dormitory in a university campus).

The LBE concept has already been tested in academic research networks like
Internet2 [2] and GÉANT [3]. Such studies have focused mainly on the impact
of LBE on more-critical traffic, and on practical issues like router configuration.

Two kinds of schedulers have been proposed to handle LBE traffic [4,1,2]:
strict, non-preemptive priority queueing (PQ) and weighted fair queueing (WFQ)
or one of its variants, like for instance weighted round-robin [5]. From a theoret-
ical standpoint, a WFQ-like scheduler can be regarded as a packet-level version
of a Generalized Processor Sharing (GPS) server [6].

We assume that the network under consideration offers only two services: best-
effort and less-than-best-effort, and that users are charged on a per-packet basis.
The network is modeled as a single bottleneck node, here either a PQ server or
a GPS server is used to handle two queues, one for packets marked as “BE” and
another for packets marked as ”LBE”. Considering an heavy traffic regime, we
approach GPS with several independent queues like in the PMP mechanism [9].
Then, there is no competition between classes, each type of traffic joins a queue
depending only on the access price and the number of sources for class i is :

N∗
i such that ui(Ni) = 0.

The system manager is then able to find the optimal scheduling in terms of profit.
Our main conclusion described in details in [18] in a work in collaboration with
D. Ros from the ENST Bretagne, is that a network offering two different services
(i.e., BE and LBE) may yield higher revenues than a network with no service
differentiation, and also that the type of scheduler used may play an important
role in maximizing revenues. In particular, we have shown that:

1. Priority Queueing is more efficient, in economic terms, than both a GPS
scheduler and a simple FIFO queue,

2. Revenues are lower with a GPS scheduler than with a FIFO queue.
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3.2 Pricing TCP Sessions

Another important scheduling proposed in the networking control literature is
Discriminatory Processor Sharing (DPS). Indeed, it provides a more flexible way
of giving priority than the PQ discipline. It has been introduced by Kleinrock
[12] for a single server. It consists in serving classes in proportions controlled by
weights, while packets within a given class are served according to a standard
processor sharing strategy (which constitutes the main difference with respect
to GPS, where packets within a class are served according to a FIFO scheme)
[13]. A theoretical charm of DPS is that, unlike GPS, a closed-form solution of
steady-state delay exists [14]. DPS has been justified in practice, at the flow
level, as a fluid approximation of some weighted round-robin scheme [20]. It has
also been shown in [15,16] that a queue with DPS discipline is well adapted, as
an approximation, to the way TCP connections can share bandwidth. It uses the
fact that, at the session level, TCP can be analyzed using a PS approach [17].
We thus use DPS at the flow level here in order to fit the TCP modelling [15,16].

We consider Poisson flow arrivals, the number of flows in progress behaves
like the number of customers in an M/M/1 processor sharing queue [12]. More-
over, as we assume two different classes of traffic, the model behaves like an
M/M/1 discriminatory processor sharing queue. Let μ be the service rate of the
server/router.

There exists a nonnegative parameter γ representing the relative priority of
data customers and 1 − γ for voice customers. Still, when packets of one class
are not present in the queue, the server is fully allocated to the other class, but
flows within a class are served according to a processor sharing (PS) scheme. A
closed-form formula for the average delays in such M/M/1 queues are given in
[19, page 86] by

IEDv =

(
1 + λdNd(2γ−1)

μ−(1−γ)λvNv−γλdNd

)

μ − λvNv − λdNd
and IEDd =

(
1 − λvNv(2γ−1)

μ−(1−γ)λvNv−γλdNd

)

μ − λvNv − λdNd
. (3)

The steady-state average numbers of sessions of each type has to ensure that
utilities are positive or null, otherwise the number of sessions naturally de-
creases. Following the same line, this average number increases until the utility
approaches 0. It means that each type of application naturally adapts its steady-
state number of sources in the sense the maximum (mean) number of sources of
a given type cannot make negative its residual utility. Hence, we have a game
between the different types of applications, for the maximum mean number of
sessions, potentially leading to a Nash equilibrium. Let us now investigate the
existence and uniqueness of this equilibrium.

We obtain that, at equilibrium, Nv and Nd must verify

– If Nd, Nv > 0, then ud(Nd, Nv) = uv(Nd, Nv) = 0,
– If Nd > 0, Nv = 0, then ud(Nd, Nv) = 0, uv(Nd, Nv) ≤ 0,
– If Nd = 0, Nv > 0, then ud(Nd, Nv) ≤ 0, uv(Nd, Nv) = 0.

Figure 1 illustrates these equations, where the maximum number of cus-
tomers of each type in the network is necessarily on the ”minimum” of curves
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0 0 0 NvNvNv

NdNdNd

Uv = 0Uv = 0

Uv = 0
Ud = 0

Ud = 0

Ud = 0

(a) (b) (c)

Fig. 1. Curves for the (maximum) number of customers of each type, and the asso-
ciated Nash equilibrium. The three possible cases are displayed. The resulting Nash
equilibrium is displayed by the thick point.

ud(Nd, Nv) = 0 and uv(Nd, Nv) = 0. Indeed, the mean number of sources of
each type increases, decreasing then the utilities until a residual utility reaches
zero. Figure 1 depicts the three situations that will be used later on: either the
curves cross each other in the domain {(Nd, Nv) : Nd, Nv ≥ 0}, or one curve is
always under the other in this domain.

It is important to note that at optimal prices, the optimal γ is then 0, giving
then strict priority to voice traffic. Actually, whatever the choices of parameters
we have, this result has been verified by extensive simulations that cannot be
reported here for lack of space. This is somehow in accordance with [18] where
we have shown for a simple M/M/1 queue that PQ has to be preferred to GPS
to optimize the revenue. In the present case, a formal proof of this conjecture
has still to be found.

This study is detailed in [26]. In the next section, we consider this model in a
wireless context of a UMTS network based on CDMA.

4 Control of Wireless CDMA Transmissions

Pricing has also been used in CDMA networks ([21,22,23]) by using their speci-
ficities: the price charged to a user is computed in terms of the QoS degradation
imposed to others by this user, the so-called externality. This can be shown to
directly depend on the transmission powers through the interferences. This gen-
erally leads to a game-theoretical analysis and price optimization. We consider
here a different view of CDMA network control where prices do not depend on
power or interference levels, but simply on the volume of transmitted data.

The model we propose is inspired by the one in [24], where an optimal resource
allocation scheme was obtained among different classes of users, but for a fixed
and pre-determined number of users in each class. In [24], power is controlled to
reach the given thresholds of signal-to-interference plus noise ratio (SINR) for
which QoS requirements are met. A processing gain exhibiting good performance
is computed. We consider here that the processing gain is fixed for each class of
service.

We focus on the reverse link of a single cell. We consider a DS-CDMA net-
work where the chip rate Rc is assumed to be equal for all users. We assume a
multiclass system, with C classes, where a user is characterized by class i. When
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packets are sent, they enter a buffer after error control coding through forward
error correction (FEC), and they are converted to a DS-CDMA signal at symbol
rate Rc/ni, with ni being the processing gain (which should not be larger than
Rc/(λiLi)). Li is the length in terms of symbols of packet of class i and λi is the
rate of the (Poisson) arrival stream of packets. We assume perfect power con-
trol, that is, for each i, the signal transmission power is controlled by the base
station such that it is received at level Pi. The choice of ni and received power
Pi at the base station affects packet delay and transmission rate. This has been
extensively discussed in [24]. Note that this also affects the performance of other
classes of users. So, we fix the values of ni to those giving good performance in
[24]. We consider that a new packet is generated as soon as the preceding one
is successfully delivered. This is referred to as continuously active users, which
might represent the transmission of long files for instance.

In DS-CDMA, a key parameter is the received signal-to-interference plus
noise-ratio (SINR). QoS metrics such as delay and bit error probability depend
directly on it. For class i users, the SINR is

SINRi =
Pini

γ
(∑Ni−1

k=1 Pi +
∑M

j �=i

∑Nj

k=1 Pj

)
+ σ2

, (4)

where γ is a constant which depends on the shape of DS-CDMA chips, Nj is the
number of class j connections and σ2 is the background noise power.

For all classes of traffic, we assume that channel coding includes forward
error correction (FEC). We assume that the bit error probability (BEP) is an
exponentially decaying function of the SINR. Specifically, we assume that for a
user in class i, the BEP is

pbi = F(SINRi),

with F(x) = exp(−βx). Similarly, thanks to the assumption that each user’s
on/off indicator is independent from symbol to symbol, the probability of re-
transmission is

pri = 1− [1−F(SINRi)]Liri (5)

with ri the FEC code rate for class i.
Performance measures can be directly expressed in terms of the SINR. Con-

sider for instance the mean packet delay IEDi for type-i traffic. It is composed
of the mean waiting time in the queue IEWi and the mean retransmission time
IESi, IEDi = IEWi + IESi. It is shown in [24] that

IEDi =
Lini

Rc(1− pri)
. (6)

On the other hand, base stations also have constraints on capacity. As stated in
[25], for dynamic range limitations on the multi-access receiver and to guarantee
system stability, the total received noise plus interference power to background
noise ratio is limited for a class-i user to

γ
(∑Ni−1

k=1 Pi +
∑M

j �=i

∑Nj

k=1 Pj

)
+ σ2

σ2
≤ 1

η
, (7)
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where η is typically 0.25 or 0.1. This inequality provides an upper-bound on the
number of users for each class, for fixed received powers.

Selfish class i users apply for service as soon as their utility ui, described
in Equation (2), is positive. Demand is thus directly controlled by prices and
reception powers, so that it potentially leads to a (Nash) equilibrium on the
number of active users. Then, for each class, either the number of sources is zero
with negative utility (meaning that no user has interest in participating), or is
equal to capacity with positive utility (meaning that no more users are allowed
to enter for physical reasons), or the number of sources is positive and less than
capacity, with null utility (meaning that the users’ cost reach their valuation
and no other user has interest in entering, since it would lead to a negative
utility). Formally, an equilibrium is a tuple (N∗

v , N∗
d ) such that N∗

v , N∗
d ≥ 0 and

∀i, j ∈ {d, v}, j �= i:

– Either N∗
i = 0 and ui(1, N∗

j ) < 0;
– or N∗

i has reached the capacity constraint (7) (so the inequality becomes an
equality) and ui(N∗

v , N∗
d ) > 0;

– or N∗
i > 0, under the capacity constraint (7), and ui(N∗

v , N∗
d ) = 0 so that

no other user has an incentive to join (a potentially leaving user being im-
mediately replaced by a new one).

Considering only one class of traffic, the number of users at equilibrium is:

N∗ =

⎧
⎪⎨

⎪⎩

0, if p > pmax = f(nP
σ2 ),

1− σ2

γP − n
γf−1(p) , if f(nPη

σ2 ) < p < f(nP
σ2 ),

1 + 1−η
η

σ2

γP , otherwise.

For several classes of traffic, the equilibrium and the leader optimization prob-
lem are more complicated and details results are described in [29] in a work in
collaboration with V. Ramos from the UAM.

5 Conclusion and Perspectives

Hierarchical games are (surprisingly) rarely used for telecommunication mod-
eling. In this paper we have shown, however, that in a context of usage-based
pricing mechanism, this type of games give important results for the optimization
of network control parameters. The only statement which used this approach is
the model presented in [27]. Our bi-level game is different because it is based on
a typical user behavior which determines the equilibrium. It should be impor-
tant to consider other user dynamics like population dynamics proposed in the
Evolutionary Game Theory [30]. It may also be interesting to consider bi-level
optimization algorithms like ones proposed in [31] in a context of communication
networks.
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Abstract. We present both a game theoretic and a distributed algorith-
mic approach for the transit price negotiation problem in the interdomain
routing framework. The analysis of the centralized transit price negoti-
ation problem shows that the only one non cooperative equilibrium is
when the lowest cost provider takes all the market. The perspective of
the game being repeated makes cooperation possible while maintaining
higher prices. We consider then the system under a realistic distributed
framework and simulate its behaviour under a simple price adjustment
strategy and analyse whether it matches the theoretical results.

Keywords: interdomain routing, repeated games, distributed algorith-
mic.

1 Introduction

Today inter-domain market plays on two different time scales: A long term time
scale (months or even years) where economic contracts are negotiated and a
short term (seconds) where routing decisions are made based on the concluded
business relationships. Some recent works [1,4,5] propose to couple those two
processes more tightly by enabling a more dynamic interaction between transit
price propositions and routing decisions. In order to capture the dynamic aspect
of such interaction, authors of these papers propose to employ a repeated game
approach. The repeated game framework enables to capture how the threat of a
future behaviour can impact the current actions of players.

In [1], the repeated routing game is introduced and a price matching strategy
is proposed and analysed. The difference between the analysis in this work and
our proposal is that we consider that the traffic dedicated to a given destination
can be routed only through a single provider. This assumption is made in order
to maintain a coherence with the Border Gateway Protocol where only one path
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is chosen to each destination. In our proposal, we still consider an interaction
between transit price negotiation and routing decision process. The bilateral
economic nature of the Internet is still maintained by a cascade like pricing
where each agent negotiates low prices only with his immediate neighbours. This
is different from the source based pricing approach taken in [1]. We propose an
adequate model to capture the different dimensions of the problem then we
focus on the analysis of the related game on some specific scenario mainly by
considering the simple but not simplistic case of one source and one destination.
In the game analysis, we assume a full knowledge of the different parameters of
the problem, which is not very realistic but gives an idea about the nature of
the game. Further, we will analyse the problem from a distributed point of view
taking into account realistic considerations.

2 The Transit Price Negotiation Model

The network is given by a graph G(N, E, cost) where N represents the ASs, cost
is the unitary cost related to managing the transit over the AS intra-network
and E are the physical inter-domain links. We will focus on an only one traffic
flow between a node S which is the source of the traffic, it can be an access
network and the node Dest its destination. The rest of the nodes are providers. A
random variable P represents the period on which inputs (graph, traffic Matrix)
are stable. We assume that P follows an exponential law with mean D, that can
be obtained by some statistical knowledge or stochastic analysis. We consider
that the source has an upper bound on price under which she accepts to send
the traffic. Otherwise, she does not send the traffic. We will denote it pmax.
We consider discrete transit prices. Price discretisation depends on the encoding
format in control packets, for instance here we take a unit discretization. That
is provider transit price can take values as 1, 2, 3, . . ..

During the period P , the inputs of the problem are stable and a stationary
environment game can model interactions between ASs during the transit price
negotiation. Each AS announces its transit price to his neighbours with the
corresponding route into the destination. When an AS decides to buy a route
from its neighbour, he can itself announce this route to his own neighbours while
proposing an adequate transit price. Thus, the negotiation follows a cascade like
model from the destination backward to the source, where each AS in the path
plays both the customer and the provider role. The objective of each provider
is clearly to maximize its own benefit by proposing attractive transit prices but
also by choosing itself the lowest providers. In case of identical announces, an
AS can choose a provider following a pre-order on his providers. Our goal is to
analyse equilibrium situations where ASs do not have the incentive to deviate
from their proposed prices and to check whether such situations are beneficial
to the sender (the source).

The game proceeds in series of stages of identical duration d a constant of
common knowledge. Then d/D models the probability of the game coming to
an end. We consider δ such that d/D = 1 − δ the probability that the game is
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still taking place. Hence, the game arrives to stage k with probability δk. At the
start of each stage : Each player advertises its per packet price . We suppose
that each AS is aware of the history of the game; that is after each stage all ASs
are aware of proposed prices and consequent outcomes on the previous stages.

A powerful notion while analysing a repeated game is the subgame perfect
equilibrium[6], where the played strategies represent a Nash equilibrium in each
subgame. That is given any history of the game given by past plays, the adopted
strategies still represent a Nash equilibrium trough the rest of the game. A set of
strategies can be proved to induce a subgame perfect equilibrium if they satisfy
the one deviation principle. This principle ensures that no player can increase
its utility by deviating from its original strategy at a single stage. The intuition
behind this principle is that improving the utility of a player supposes that at
least at one stage the pay-off obtained by deviating is greater than the one in
the original strategy. Thus, in order to prove that the set of strategies form a
subgame perfect equilibrium, it is sufficient to prove that they satisfy the one
deviation principle.

Now, let us analyse our game under these considerations on a simple sce-
nario. First, we consider the simple case where there is a single communication
in a network of 4 vertices, one source and one destination and two intermediate
providers. We consider that providers have identical costs. There exists an anal-
ogy with the Bertrand game [3]. Bertrand game models interactions between
duopoly firms that propose homogeneous products and compete only on price.
The consumers buy all products from the cheaper firm or half at each when
the price is equal. In the Bertrand game, firms are supposed to have the same
marginal cost, when the customer demand is supposed to be linear in the price.
A monopoly price p is given and represents the price that the firm will charge
if she had the monopole on the market. In our simple scenario providers have
identical costs when demand is constant. The monopole price is given by pmax

since it is the maximum price that can be charged.
There are two possible outcomes in Bertrand competition : Both firms decide

to not cooperate and price the only non-cooperative Nash equilibrium which is to
charge the marginal cost c. Indeed for each price p1 proposed by firm1, the best
response of firm2 consists for every p1 > c in lowering slightly the price to win
the market. The only one equilibrium is (c,c). Note that when marginal costs are
different, the firm with lower marginal cost can win all the market. Otherwise,
both firms can cooperate and charge the monopoly price p and thus share the
market. Since BGP requires a single routing, splitting the traffic can be done on
time by alternating (pmax, pmax+1) announces. Hence, for instance player 1 wins
over even stages and player 2 over odd ones. In order to make this threat credible
a punishment should be added to avoid deviations. Thus, a possible strategy can
be to alternate (pmax, pmax+1) announces and if player 1 for instance deviates by
playing p′ = pmax−11 in stage 2k then player 2 plays p′−1 in stage 2k +1. This
strategy satisfies the one stage deviation principle for sufficiently patient players.

1 p′ should be lower than pmax in order to win the game but the higher possible to
make the maximum benefit. Given the unit discretisation, that price is pmax − 1.
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Indeed, suppose without loss of generality that player 1 decides to deviate by
playing pmax−1 in an odd stage 2k then player 2 will play pmax−1 in the stage
2k +1. Considering an only one stage deviation, the game will continue with the
original strategy. Then pay offs will differ only in stage 2k and 2k + 1. In stage
2k player 1 wins with price p − 1 and in stage 2k + 1 he will loose which give
him a total benefit of pmax − 1.2 When in the original strategy he would get
a total pay-off of pmax. The expected improvement is given by discounting the
pay off by the probability of the game taking place at the corresponding stage.
Hence the deviation is profitable iff: (pmax−1)∗ δ2k > pmax ∗ δ2k+1 that is when
δ ≥ pmax−1

pmax
the one deviation principle is satisfied for sufficiently patient players

and the proposed strategy is then a subgame perfect equilibrium. Note, that this
strategy is profitable to both providers but is not profitable to the source since
it induces a flip-flop like routing. This behaviour can easily be generalized to the
case of n providers with identical costs.

Let us consider now the case of one source and one destination with n possible
intermediate providers having different costs. For the purpose of simplicity, let
us assume that cost1 < cost2 < . . . < costn where costi is the cost of provider i.3

The utility of the provider is the difference between its price and its cost if he
wins and 0 otherwise. Again, similarly with the Bertrand game the only one
non cooperative equilibrium is when the lowest cost provider (here provider 1)
takes all the market by proposing cost2 − 1. Again the perspective of the game
being repeated makes cooperation possible in order to maintain higher prices
and strategies can be constructed with the same intuition to prevent deviations.
However, given that costs are different, many cooperations are possible. For
example, provider 1 can announce a price in [cost2..cost3− 1]4 in order to invite
provider 2 to join him and share the market. Actually, they can cooperate by
both setting the price at cost3− 1 the maximum price such that they can get all
the market. In such a situation, we will talk about coalition and denote the set
of providers joining it coalition2 = {1, 2}. And so on, provider 1 can set a price
in [costi−1..costi − 1] in order to invite provider i− 1 to join him and share the
market then forming coalitioni = {1..i}.

Obviously coalitioni ⊂ coalitionj iff i < j that is if a provider j can join
a given coalition then every provider i < j can do. Also, each provider i can
only join a coalitionj where j >= i. Note that if providers i = 1, . . . , j de-
cide to cooperate thus forming coalitionj and given that they are all utility
maximisers they should announce costj+1 − 1. Hence, we will talk about strat-
egy of joining coalition j when the strategy consists on setting price equal to
costj+1 − 1.

Now, the question that arises is which coalition will be chosen and would all
providers necessary to form it have actually incentive to join it. Let denote sj

i

2 Of course multiplied by the amount of traffic, but here we consider without loss of
generality a unit of traffic.

3 When cost1 ≤ cost2 ≤ . . . ≤ costn, we obtain the same results, we need just to
consider class of providers having the same cost.

4 Integer values in the corresponding interval.
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the strategy of player i that consists in choosing to join coalitionj where j ≥ i.
This can be done by provider i setting a price pj

i = costj+1 − 1.
The utility of a player i when choosing coalitionj is given by:

ui(s
j
i , s−i) =

⎧
⎨

⎩
0 if ∃i′, j′ < j s.t si′ = sj′

i′
pj

i−costi

|{i′/si′=sj

i′}|
otherwise

That is, the utility of provider i is 0 if another provider proposes a lower price,
otherwise he shares the market with the other providers that have proposed the
same price as him. Hence the utility of player i choosing a coalitionj given that
all other providers i′ ≤ j have also join that coalition is (pj

i − costi)/j. Each
player is expected to choose the coalition that maximizes such utility. We will
denote the corresponding strategy ( price announced ) s∗i .

For instance for provider 1 s∗1 = max{cost2 − cost1 − 1, . . . , costn−cost1−1
n−1 ,

pmax−cost1
n } and we denote coalitionj∗ the corresponding coalition. Now, the

question is whether providers {2, . . . , j∗} will choose to join the same coalition.
That is coalitionj∗ is the coalition that maximizes their utility too. The answer
is given by the following theorem:

Theorem 1. If coalitionj∗ is the coalition that maximizes the first provider
utility then it maximizes providers 2, . . . , j∗ utilities:

∀i′ ∈ {2, . . . , j∗} s∗i′ = sj∗
i′

The proof skipped due to space limit can be found in the research report [2].
That is the lowest cost provider chooses his preferred coalition and the in-

volved providers follow him. When different best coalitions are possible (with
the same utility) a problem of coordination can arise. A dominant strategy for
the lowest cost provider is to choose the lowest coalition and for the other mem-
bers to follow him. When a player k deviates players 1, .., k − 1 punish him by
playing according to coalitionk−1. For sufficiently patient players, this is a sub-
game perfect equilibrium. The intuition, is that the punishment will exclude the
deviator from the coalition for the rest of the game.

Let us consider now the case where instead of direct connection, providers are
connected via disjoint routes to the source. Let us denote i the direct provider
connected to the destination, i′ the corresponding provider connected to the
source and li the length of the route between i and i′. Without loss of generality
we consider l1 < l2 < . . . < ln. The benefit of a provider is the difference
between the price at which he has bought the route (the price of his provider)
and the price at which he proposes the route to his customer. The net benefit is
obtained by subtracting the transit cost. For simplicity assume first that there
are no transit costs. That is a customer is interested to buy a route if at least
he can make a benefit of 1.

The game can be separated into two different games: the sequential game
that each provider i plays with his predecessors on the route to s and the si-
multaneous game that players i = 1 . . . n are playing in order to fix their price.
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This separation is possible and relevant only because paths are disjoint. Indeed
on each route, players between i and i′ including i′ are completely dependent
on i the owner of the route toward the destination. This game is known as the
ultimatum game [6] where some value is to be divided between some players.
A given player (called the first mover) proposes a division of the value and the
others can only accept the division or refuse it inducing utility of 0 to everyone.
The optimal strategy for the player proposing the division is to take the max-
imum portion and let to the others the minimum such they are still interested
( in a continuous setting ε and in a discrete frame setting 1) which is an Nash
equilibrium. The player who is proposing the division has an advantage because
he is the first mover in the sequential game. In our case, if there is for example
only one route, the provider 1 is the first mover because he announces a route to
the destination first and he should propose the route at pmax− l1 letting each of
the other intermediate providers get a benefit of 1 (the route is proposed then to
the source at pmax). The following providers will then accept since they prefer
to get a benefit of 1 rather than to lose the market.

When there are several routes the provider i has to fix his price depending on
the simultaneous game he is playing with the other direct providers. Providers
directly connected to the destination ({1, . . . , n}) have to take into account that
each provider on the correspondent path should at least make a benefit of 1. Hence
each of the n possible routes can be proposed to the source at least at li + 1 by
each corresponding i′. The problem can be viewed then as n providers proposing
to connect directly the source and the destination as in the former case with each
provider i having a cost li +1. The lowest cost provider who has the market power
is the one on the shortest path. As we have argued above, he chooses his optimal
coalition and the other involved providers follow him. Intermediate providers have
to propose the price at which they have bought the route +1, otherwise their route
will not be chosen by the source. Note that when internal transit costs are not
null then we can obtain the same results by considering as metric the sum of
transit costs. We give an example that help to understand how the situation can
be different in the general case from the special cases.

Example 1. Let us consider the network given in Fig. 1. Suppose that the source
has a pmax = 8. Provider 1 prefers to join coalition2 since (6/2 > 8/3) and
provider 2 follows him. They will then propose p1 = 6 and p2 = 5. Provider 4

Fig. 1. Cases of non disjoint routes between the source and the destination



272 D. Barth et al.

should announce 1 to insure that the second route will be chosen. His advantage
is that he blocks the third route. he can propose a coalition to provider 1 where
they can improve their benefit. The first and the second route still shares the
market but at a higher price (pmax) as depicted in Fig 1. Provider 2 conserves
his benefit and have non incentive to punish provider 1 or 4. Provider 4 acts as a
stopper of the third route and thus can propose a second coalition that improve
his benefit without decreasing benefit of provider 2.

This is the intuition we have used to propose an algorithm that computes prices
in the general case [2]. It consists in computing successive coalitions to improve
intermediary providers benefit while respecting precedent coalitions.

3 The Dynamic Distributed Game

In this section we try to analyse how the system behaves in a distributed frame-
work. Indeed, in reality nodes have only a local view of the game including the
topology and thus the nature and the length of the possible routes. We simulate
the distributed game and investigate if some specific local strategies can lead to
a similar results than the one expected by the theoretical analysis. For this pur-
pose, we need to introduce first the distributed algorithmic model. The system
is still modeled by a graph linking the source S and the destination Dest with m
nodes labeled i ∈ {1 . . . n . . .m} where the direct nodes are {1 . . . n}. We denote
Successor(i) the set of possible providers of node i and Predecessor(i) the set
of possible customers of the node i. A Node i is characterized by the following
variables: Current price per unit of traffic denoted pi which is announced by
the node i to his neighbours in Predecessor(i), Current Provider denoted
provider(i) which is one of node’s neighbours that can reach the destination.
It is the one who proposes the best price to i. For j = provider(i) we have
pj ≤ pk ∀k ∈ Successor(i) , State denoted state(i) that indicates whether the
node is crossed by the transit traffic (O) or not (N). That means that the node
belongs to the chosen route. For the special case of the source the state indicates
whether the source has received at least an acceptable route (its price is lower
than pmax ) or not. We define the set Customer(j) = {k/provider(k) = j}. We
have pi > pprovider(i) ∀i that is a node proposes a route at a price higher than the
price at which he has bought it. Every node chooses the provider that proposes
the lowest route price. If a node chooses a provider j and thereafter it receives
from a provider k a proposal of a route with lower price it switches toward k.

In a distributed setting, each node is informed of all the variables of its neigh-
bours using traffic control. However all routes may not be visible at every node:
the set of routes learned at one node depends on route selection at its provider.
Node’s state depends on the route chosen by the source. At the beginning each
node’s state is equal to N because routes are not established yet. Node’s state
is updated when he receives a state update message from its neighbours as fol-
lowing: state(i)= O if ∃j ∈ Customer(i) such that state(j) = O or if i = S
and pprovider(S) ≤ pmax. and N otherwise. Hence when the source chooses an
acceptable route, its state changes to O and then it sends an update message



Transit Prices Negotiation 273

to its provider who in turns changes his state and so on until the destination.
When the source switches on a new received route with a better price, the state
of nodes on the new route is updated iteratively into O when the state of the
nodes on the old route is updated iteratively into N .

We propose to test a simple strategy that all the nodes can use to update their
price depending on their state: if state(i) = O then pi ←− pi + 1 otherwise
state(i) = N and then if (pi − pprovider(i)) > 1 then pi ←− pi − 1.

The intuition behind this strategy is that providers with no transit traffic
decrease their prices in order to attract the traffic. Each provider accepts to
transit the traffic if he has at least a benefit of 1 and does not decrease its price
under this limit. When a provider gets the transit traffic, he tries to increase his
price in order to reach the maximum possible benefit.

4 Simulation Analysis

Our objective here is to study the stabilizing behaviour of the distributed system
under the above price adjustment strategy and whether it matches the theoretical
results. Simulation is done using OMNET [7] simulator. We consider different
topologies (Fig. 2). Links have the same propagation delay equal to 0.31 ms.
Neither queuing nor scheduling delays are considered in the simulation. Node
state messages are generated automatically when the node state is updated and
are sent as traffic control messages. In our simulation, the stage game duration is
d = 50ms. We implement the simple price adjustment strategy explained above
and consider different scenarios:

Scenario 1. We consider topology 2 and simulate the price adjustment strategy
when transit prices starts from a high price (chosen > pmax = 20 as depicted in
Fig. 3 at the left side. Then prices are adjusted until t= 150 ms (stage 4) where
routes proposed to the source become acceptable. Both routes share the market
but at a higher price. Direct providers have an advantage over intermediate ones,
the first one taking the maximum benefit.

When a direct provider chooses to start at a price lower than pmax as in the
scenario depicted in Fig. 3 at the right side then his route is selected during

Fig. 2. The different simulated topologies
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Fig. 3. Providers benefit in scenario 1

Fig. 4. Direct providers and intermediary providers benefits in scenario 2

few steps. Prices are then adjusted until a situation where both routes share the
market. Note that provider 41 and 44 would have better benefit with the prece-
dent scenario where they started both at pmax. In summary, this simple strategy
gives similar results to those expected by the theoretical analysis using only local
information. Indeed, when providers start from high prices they can share the
market while maintaining higher prices than when they do not cooperate.

Scenario 2. We consider now topology 3, where three different direct providers
compete for the market. We simulate the price adjustment strategy where all
transit prices starting from pmax = 20. Direct providers benefits and interme-
diate providers benefits are depicted in Fig 4. As with topology 1, prices are
adjusted until step = 150 ms (stage 4) where routes proposed to the source be-
come acceptable. However, direct providers do not succeed in maintaining high
prices. This can be explained by the way prices are updated. Indeed, the three
routes share the market but each provider lowers it price at least two times (when
the other routes are chosen) but increases only one time its price. This leads the
prices to decrease drastically. We need a more elaborated strategy in order to
obtain a behaviour which is similar to the theoretical expected behaviour.
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5 Conclusion

We present a combined game theoretic and distributed algorithmic approach to
the transit price negotiation problem. We highlight situations where cooperation
is possible in order to maintain higher prices. However such situations lead to a
flip flop routing. An interesting issue is to investigate how the source can avoid
such behaviour for example by adding some penalties when its provider changes
its price. A more elaborated local strategies are currently tested mainly based
on stochastic learning of optimal strategies. Finally we are investigating how to
generalize the proposed approach to a network where there are different sources
and destinations for the traffic while considering coherent routing.
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Narutowicza 11/12, 80952 Gdańsk, Poland
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Abstract. The paper focuses on the problem of minimisation of energy
consumption by wireless devices. Since wireless communications are some
of the main causes of battery drainage, connections must be carefully
established. We study complexity issues of the so called Cost Minimisa-
tion in Multi-Interface Networks problem. Given a graph G = (V, E)
with |V | = n and |E| = m, which models a set of wireless devices
(nodes V ) connected by multiple radio interfaces (edges E), the aim
is to switch on the minimum cost set of interfaces at the nodes in or-
der to satisfy all the connections. Every node holds a subset of all the
possible k interfaces. A connection is satisfied when the endpoints of the
corresponding edge share at least one active interface. We distinguish
two main variations of the problem by treating the cost of maintaining
an active interface as uniform (i.e., the same for all interfaces), or non-
uniform. In general, we show that the problem is APX -hard while we
obtain an approximation factor of min{�k+1

2
�, 2m

n
} for the uniform case

and a (k − 1)-approximation for the non-uniform case. Next, we concen-
trate our attention on several classes of networks: with bounded degree,
planar, with bounded treewidth and complete.

1 Introduction

While technology advances and more powerful devices are released, special ef-
fort is required for managing new kinds of communication problems. Nowadays
wireless devices hold multiple radio interfaces, allowing switching from one com-
munication network to another according to required connectivity and related
quality. The selection of the “best” radio interface for a specific connection might
depend on various factors. Namely, its availability in specific devices, the re-
quired communication bandwidth, the cost (in terms of energy consumption)
of maintaining an active interface, the available neighbours and so forth. While
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managing such connections, a lot of effort must be devoted to energy consump-
tion issues. Devices are, in fact, usually battery powered and the network sur-
vivability might depend on their persistence in the network. This introduces a
challenging and natural optimisation problem that must take care of different
variables at the same time. Generally speaking, given a set of k interfaces and
a graph G = (V, E), where V represents the set of wireless devices and E the
set of required connections according to proximity of devices and the available
interfaces that they may share, the problem can be stated as follows. What is
the cheapest way, i.e., which subset of available interfaces in each node must be
activated in order to satisfy (cover) all the connections described by E while min-
imising the overall cost? Note that a connection is satisfied when the endpoints
of the corresponding edge share at least one active interface.

We call such a problem Cost Minimisation in Multi-Interface Networks
(k-CMI for short). In this paper, we study the complexity of k-CMI in various
scenarios. k-CMI turns out to be a very hard problem in general, hence we also
consider possible approximation algorithms. We deal with two main variations of
the problem: the case in which the cost of activating an interface is the same for
each interface, and the more general case in which such a cost may be different.
Indeed, the first model is equivalent to asking for the minimum total number of
activated interfaces inside the network in order to cover all the connections. We
also consider different graph classes that are of interest from both theoretical
and practical points of view, namely: with bounded degree, since in real world
scenarios users are normally connected to a limited number of nodes; planar,
since the induced graph of joining users in a network is likely to be planar; trees,
since MiddleWare strategies are heavily based on this kind of structure (see for
instance [1]); complete graphs, since this is one of the main structures used for
modelling P2P networks (see for instance [2]).

In contrast to its natural importance, to date there appear to be no known
complexity results of k-CMI. Conversely, from a practical point of view, effi-
cient algorithms dealing with cost minimisation in multi-interface networks are
strongly required [3,4]. Indeed, our research starts from [4] where a slightly dif-
ferent model of k-CMI is introduced. That model considers also the possibility of
having mutually exclusive interfaces, i.e., interfaces that, if activated, preclude
the activation of some other interfaces. The motivation is quite technical, for
instance the WiFi interface can operate in different modalities: Infrastructure
and Ad-Hoc. If a device activates WiFi in the Infrastructure modality, it cannot
satisfy connections that require the Ad-Hoc modality and vice versa. In this pa-
per we have not introduced this further restriction since the problem is already
of practical relevance and not easily solvable. Table 1 summarises our obtained
results. Due to space limitations, some of the proofs have been omitted and will
appear in the full version of the paper.

Outline: The next section provides some definitions and notation in order
to formally describe the k-CMI problem. Section 3 contains the results con-
cerning the hardness, and Section 4 gives approximation algorithms for the
k-CMI problem in general graphs. Section 5 is devoted to the hardness and the
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Table 1. Hardness and approximability of the k-CMI problem

Graph class Interfaces Complexity of k-CMI

non-uniform costs uniform costs

General graphs k = 2 O(n3) O(nm)

k ≥ 3 (k − 1)-approx,
APX -hard

min{�k+1
2

�, 2m
n
}-approx,

APX -hard

Graphs of bounded Δ k ≥ 3 Δ-approx,
APX -hard for Δ ≥ 5

Δ+1
2

-approx,
APX -hard for Δ ≥ 5

Planar graphs k ≥ 3 NP -hard, PTAS NP -hard, PTAS

Trees any k O(n) O(n)

Complete graphs any k O(n2) O(n2)

approximation factors of k-CMI with respect to various classes of graphs. In par-
ticular, we consider graphs with bounded degree, planar, with bounded treewidth
and complete. Finally, Section 6 contains conclusive remarks and a discussion of
interesting open problems.

2 Definitions and Notation

Unless otherwise stated, the network graph G = (V, E) is always assumed to be
simple (i.e., without multiple edges), undirected and connected. Moreover, we
always denote by n and m the cardinality of the sets V and E respectively. The
degree of node v ∈ V is denoted by Δv and the set of its neighbours by N(v).
The minimum node degree of graph G is denoted by δ, and its maximum node
degree by Δ.

A global characterisation of interfaces of respective nodes from V is given
in terms of an appropriate interface assignment function W , according to the
following definition.

Definition 1. A function W : V → 2{1,...,k} is said to cover graph G = (V, E)
if for each {u, v} ∈ E the set W (u) ∩W (v) �= ∅.
The cost of activating an interface for a node is assumed to be identical for all nodes
and given by cost function c : {1, . . . , k} → N, i.e., the cost of interface i is written
as ci. The considered k-CMI optimisation problem is formulated as follows.

k-CMI: Cost Minimisation in Multi-Interface Networks

Input : A graph G = (V, E), an allocation of available interfaces W : V →
2{1,...,k} covering graph G, an interface cost function c : {1, . . . , k} →
N.

Solution: An allocation of active interfaces WA : V → 2{1,...,k} covering graph
G such that WA(v) ⊆W (v) for all v ∈ V .

Goal : Minimise the total cost of the active interfaces, c(WA) =∑
v∈V

∑
l∈WA(v) cl.
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In all further considerations, the problem instance is stated in the form of the
triple (G, W, c).

3 Hardness in General Graphs

Theorem 1. The optimal solution to 2-CMI can be found in O(n3) steps.

Proof. Let (G, W, c) be the considered instance of 2-CMI. For any I ⊆ {1, 2}, let
VI ⊆ V denote all those nodes whose set of available interfaces is exactly I, and
let VA I denote all those nodes whose set of active interfaces in solution WA is
exactly I (formally, VI = W−1(I) and VA I = W−1

A (I)). The sought solution WA

may be equivalently stated in the form of a partition V = VA{1}∪VA{2}∪VA{1,2}.
Conversely, a given partition V = VA{1} ∪VA{2} ∪VA{1,2} provides a correct and
optimal solution to k-CMI if and only if the following conditions are fulfilled:

1. All nodes with only one interface available activate it, i.e. V{1} ⊆ VA{1} and
V{2} ⊆ VA{2}.

2. No two nodes u ∈ VA{1} and v ∈ VA{2} may be connected by an edge of the
graph, {u, v} /∈ E.

3. The value of the cost expression c(WA) = c1|VA{1}| + c2|VA{2}| + (c1 +
c2)|VA{1,2}| is minimised.

In particular, the fulfillment of condition 1 is equivalent to the requirement that
WA(v) ⊆W (v) for all v ∈ V , the fulfillment of condition 2 implies that all edges
from E are covered by WA, while condition 3 is a restatement of the k-CMI
minimality requirement.

It now suffices to show an efficient algorithm for finding a partition V =
VA{1} ∪ VA{2} ∪ VA{1,2} which fulfills conditions 1–3. In order to achieve this,
consider the following modification of graph G, remembering that V can be
partitioned into the disjoint union V{1} ∪ V{2} ∪ V{1,2} of nodes with different
available sets of interfaces.

In the first step, identify all nodes of G belonging to V{1} into one distinguished
node s1, and all nodes of G belonging to V{2} into one distinguished node s2,
appropriately modifying all adjacent edges (if set V{1} or V{2} is empty, the
respective node s1 or s2 is simply inserted as an isolated vertex). Next, for
all the remaining nodes of G, v ∈ V{1,2}, add two copies of v labelled v′ and
v′′ as isolated nodes to the set of nodes of the graph, and insert the edges
{v, v′}, {v′, s1}, {v, v′′}, {v′′, s2} into its edge set, Figure 1. The new graph is
now denoted as G = (V , E); for convenience, we write V = {s1, s2} ∪ V{1,2} ∪
V ′
{1,2}∪V ′′

{1,2}. Let us recall that a node cutset between nodes s1 and s2 in graph
G is any set of nodes S ⊆ V \ {s1, s2}, such that any path between s1 and s2

contains at least one node from S; we make the following claim.

Claim 1. In graph G, there exists a node cutset S between s1 and s2, such that
|S ∩ V{1,2}| = p, |S ∩ V ′

{1,2}| = p′, |S ∩ V ′′
{1,2}| = p′′, and |S ∩ {v, v′, v′′}| ≤ 1

for all v ∈ V{1,2}, if and only if in graph G there exists a partition of V into
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Fig. 1. On the left, an exemplary instance of 2-CMI, together with the node set par-
tition V = V{1} ∪ V{2} ∪ V{1,2}. On the right, the corresponding graph G.

sets VA{1}, VA{2}, VA{1,2} which fulfill conditions 1 and 2 and |VA{1}| = |V{1}|+
p′′, |VA{2}| = |V{2}|+ p′, |VA{1,2}| = p.

The claim implies that the problem of finding a partition of V with minimum
cost c(WA) is equivalent to finding the specified node cutset in G, for which the
value of the following expression is minimised:

C(WA) = c1|VA{1}|+ c2|VA{2}|+ (c1 + c2)|VA{1,2}|=
= c1(|V{1}|+ p′′) + c2(|V{2}|+ p′) + (c1 + c2)p =
= (c1|V{1}|+ c2|V{2}|) + c1p

′′ + c2p
′ + (c1 + c2)p

Since the value of (c1|V{1}| + c2|V{2}|) depends only on the problem instance
and not on the choice of S, it may be discarded as constant, and a simpler cost
function can be minimised instead:

c(S) = c1p
′′ + c2p

′ + (c1 + c2)p

However, this minimisation criterion can be imposed by a simple node weight
function. Let μ : V \{s1, s2} → N

+ be defined as follows: μ(v) = c1+c2 for all v ∈
V{1,2}, μ(v′) = c2 for all v′ ∈ V ′

{1,2}, and μ(v′′) = c1 for all v′′ ∈ V ′′
{1,2}. Clearly,

c(S) =
∑

u∈S μ(u), and a cutset S minimising c(S) can be found by reduction to
the weighted maximum flow problem [5]. In general, a solution may therefore be
obtained in O(n3) time by applying the push-relabel algorithm [6], whereas in
the case of unit cost interfaces O(nm) time complexity can be achieved by means
of the Ford-Fulkerson algorithm [5]. It now only remains to be shown that such a
cutset S can be converted into a cutset fulfilling the condition |S∩{v, v′, v′′}| ≤ 1,
for all v ∈ V{1,2}, required in the claim, without affecting the value of c(S).
Indeed, note that if v belongs to S, then both v′ and v′′ can always be removed
from S without any consequences. On the other hand, if v′ ∈ S and v′′ ∈ S,
then the set S∗ = S \ {v′, v′′} ∪ {v} is also a valid cutset, and c(S∗) = c(S).
By repeating the procedure, after a linear number of steps we obtain a cutset
in G, which, by applying the method from the proof of the claim, can in linear
time be converted into a partition VA{1} ∪ VA{2} ∪ VA{1,2} of V . Knowing this
partition, the final solution to k-CMI can be returned after an immediate linear-
time post-processing step. 
�
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Theorem 2. For any k ≥ 3, k-CMI is APX-hard even when restricted to in-
stances of maximum degree Δ = 5, and unit cost interfaces.

Proof. We consider a polynomial transformation from the well-known Vertex
Cover problem on subcubic graphs to k-CMI. On those instances Vertex Cover
is known to be APX -hard [7]. Given a subcubic graph G = (V, E), it is known
that in general its chromatic number is at most three [8]. We can then partition
its nodes into three subsets V1, V2 and V3 according to an optimal coloring in
such a way that V1

⋃
V2

⋃
V3 ≡ V and for each edge e = {x, y} ∈ E, x and y do

not belong to the same subset Vi for every i = 1, 2 or 3.

{1,2}

3

V2
V1 V1 V2

V3

{1,2,3}
{1,2,3}

{1,2,3}
{1,2,3}

{1,3}

{1} {3}

{1,2,3}
{1,2,3}

{1} {3}

G

{2}
{3}

{2}
{3}

{1}

{2}

{1} {2}
{2,3}

V

Fig. 2. On the left, the graph G subdivided into three node subsets according to a 3-
coloring and the three possible kind of edges. On the right the modifications obtained
for each kind of edge belonging to G and the interfaces associated to the related nodes.

As illustrated in Figure 2, with each node v ∈ V we associate three interfaces,
namely 1, 2, and 3. Moreover, to each v ∈ V we connect two new nodes. Those
new nodes have only one interface: 2 and 3 (1 and 3 or 1 and 2) respectively
if v ∈ V1 (v ∈ V2 or v ∈ V3). For each edge of G we add a further node. With
such a node we associate two interfaces. If the considered edge connects V1 and
V2 (V1 and V3 or V2 and V3) then we associate interfaces 1 and 2 (1 and 3
or 2 and 3) to the added node. Without loss of generality, let us consider an
edge e = {x, y} ∈ E such that x ∈ V1 and y ∈ V2. In order to solve k-CMI
on the new graph of maximum degree 5 built from G, we necessarily have to
activate interfaces 2 and 3 in x, and 1 and 3 in y. In order for both x and
y to be able to communicate with the new intermediate node, either such a
node must activate both its interfaces or one among x and y has to activate its
third available interface. Since we are in the unit cost interface context, both the
solutions are locally equivalent. On the other hand, activating the third interface
for either x or y may lead to a decrease of the number of activated interfaces
in the global solution. This is implied by the fact that the neighbourhood of
the added intermediate node between x and y is constituted by only x and y,
while both x and y may have many other connections. So, we can always look
for solutions where one among x and y has all its three interfaces activated. In
order to conclude the proof, it remains to show that if a solution for k-CMI
can be found on the new graph, then a solution for Vertex Cover on G can be
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easily obtained. From the above discussion, in fact, we have shown that for each
edge e ∈ E, at least one of its endpoints must have all its interfaces activated.
When this happens we say the node belongs to the Vertex Cover and the claim
holds. 
�

4 Approximation Algorithms

Theorem 3. Given a graph G = (V, E), k-CMI is approximable within a factor
of k − 1.

Proof. In order to achieve such an approximation we describe a simple algorithm
that greedily activates interfaces among the nodes. It starts from the cheapest
interface 1, and it activates it in each node that has a neighbour holding that
interface. Let V1 ⊆ V be the set of nodes in which the algorithm activated
interface 1 and let E(V1) be the corresponding set of covered edges. Note that
the optimal solution restricted to E(V1) (i.e., the set of activated interfaces of an
optimal solution at the endpoints of the edges belonging to E(V1)) clearly costs
at least as much as the cost of our algorithm. In the second step, the same is done
for the next cheapest interface 2 among the remaining connections E \ E(V1).
Again, the cost of the optimal solution restricted to E(V2) is at least the cost
paid by our algorithm. This is implied by the fact that any connection belonging
to E(V2) cannot be covered by interface 1 otherwise the algorithm would have
covered it in the previous step. This process is continued for all the interfaces
in a non-decreasing cost order but for the last two interfaces. When the two
most expensive interfaces remain, in fact, we can apply the optimal algorithm of
Theorem 1. Since each step costs at most as much as the optimal solution, the
claim then holds by observing that the whole process requires k − 1 steps. 
�
Theorem 4. Given a graph G = (V, E), k-CMI is approximable within �k+1

2 �
in the case of unit cost interfaces.

Proof. Consider the following algorithm for assigning a set of active interfaces
WA(v) ⊆W (v) for each node v ∈ V .

1. Compute a minimum hitting set of interfaces WH(v) which is potentially
sufficient for communication with all neighbouring nodes, i.e. a set WH(v)
such that WH(v) ⊆ W (v), ∀u∈N(v)WH(v) ∩W (u) �= ∅, and the cardinality
of WH(v) is minimised.

2. If |W (v)| > �k+1
2 �, then let WA(v) be any subset of W (v) such that WA(v) ⊇

WH(v) and |WA(v)| = max{|WH(v)|, �k+1
2 �}.

3. If |W (v)| ≤ �k+1
2 �, then let WA(v) = W (v).

Clearly, for each node v we have |WA(v)| ≤ max{|WH(v)|, �k+1
2 �}, whereas in

the optimal solution the number of active interfaces is at least equal to WH(v).
Consequently, the obtained solution is a �k+1

2 �-approximation. In order to prove
the correctness of the solution, it suffices to show that for each edge {u, v} ∈
E(G) we have WA(u) ∩WA(v) �= ∅. Observe that:
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– if |W (u)| ≤ �k+1
2 � and |W (v)| ≤ �k+1

2 �, then WA(u) = W (u), WA(v) =
W (v), and W (u) ∩W (v) �= ∅ by definition of the instance of k-CMI;

– if |W (v)| > �k+1
2 � and |W (u)| ≤ �k+1

2 �, then WA(u) = W (u), WA(v) ⊇
WH(v) and WH(v) ∩W (u) �= ∅;

– finally, if |W (v)| > �k+1
2 � and |W (u)| > �k+1

2 � then |WA(v)| ≥ �k+1
2 �,

|WA(u)| ≥ �k+1
2 � and WA(v) ⊆ {1, . . . , k}, WA(u) ⊆ {1, . . . , k};

thus in all cases the sought condition WA(u) ∩WA(v) �= ∅ is fulfilled. 
�
Theorem 5. Given a graph G = (V, E), k-CMI is approximable within 2m

n in
the case of unit cost interfaces.

Proof. The algorithm simply chooses one interface for each edge in order to
satisfy the connection. This means that for each edge at most one interface in
each endpoint is activated. It follows that for m edges it activates at most 2m
interfaces for n nodes. 
�

5 Results for Various Graph Classes

5.1 Graphs with Bounded Maximum Degree

Let us recall that a graph is called d-degenerate for some value of parameter d
if all its subgraphs have a node of degree at most d, d ≥ minH⊆G δ(H).

Theorem 6. k-CMI is approximable within d + 1 for d-degenerate graphs.

Proof. By a simple characterisation [9], in linear time it is possible to order the
node set of a d-degenerate graph in the form of a sequence s = {v1, . . . , vn}, such
that ∀1≤i≤n|{v1, . . . , vi−1}∩N(vi)| ≤ d. Consider an algorithm which assigns the
set WA(v) to successive nodes of V according to sequence s. Initially, all the sets
WA(v) are empty; in the first step, set WA(v1) remains empty. In the i-th step,
for i ≥ 2, we define WA(vi) ⊆W (vi) in such a way that ∀1≤j<i,vj∈N(vi)W (vj) ∩
WA(vi) �= ∅ and the value of the cost expression

∑
l∈WA(vi)

cl is minimised;
moreover, for all nodes vj ∈ N(vi), 1 ≤ j < i, set WA(vj) is augmented by
at most one interface of minimum possible cost to guarantee that WA(vj) ∩
WA(vi) �= ∅. Once the process is complete, the obtained function WA is clearly
a correct solution to k-CMI. Observe that in the i-th step, i ≥ 2, set WA(vi) is
assigned a cost value not greater than that of the optimal interface assignment
for node vi, and that the cost of only at most d other sets WA(vj), 1 ≤ j < i,
is additionally increased by a value not exceeding the cost of WA(vi). The cost
of the obtained solution is thus not greater than (d + 1)(Copt − Copt v1), where
Copt denotes the total cost of an optimal solution for graph G and Copt v1 is the
cost of some optimal solution for node v1, and the proposed algorithm is clearly
a (d + 1)-approximation. 
�
For any graph G of maximum degree Δ ≥ 2, there exists an edge e = {u, v} ∈ E
such that graph G \ {e} is (Δ − 1)-degenerate, with a corresponding sequence



284 R. Klasing, A. Kosowski, and A. Navarra

of nodes such that u = v1 and v = vn [8]. The procedure from the proof of
Theorem 6 can be applied for graph G \ {e}, leading to an interface assignment
of cost at most Δ(Copt − Copt v1) for G \ {e}. Since the cost of additionally
enabling communication on edge e using the cheapest possible interface shared
by nodes u and v is at most 2Copt v1 ≤ Δ ·Copt v1 , the total cost of the obtained
solution remains not greater than Δ · Copt.

Corollary 1. k-CMI is approximable within Δ for graphs of maximum de-
gree Δ.

For the case of unit cost interfaces the following theorem provides an improved
approximation ratio.

Theorem 7. k-CMI is approximable within Δ+1
2 for graphs of maximum degree

Δ, in the case of unit cost interfaces.

5.2 Planar Graphs and Graphs of Bounded Treewidth

For planar graphs, the NP -hardness of k-CMI can be shown by analogy to the
proof of Theorem 2, since the Vertex Cover problem remains NP -hard for planar
graphs of maximum degree 3 [10]. However, the optimisation criterion of k-CMI
is local, i.e. the validity and local optimality of a solution for a given node can be
verified in polynomial time only by analysing its neighbourhood. Taking this into
account, k-CMI for planar graphs is easily shown to admit a polynomial time
approximation scheme (PTAS), constructed according to the general approach
of Baker [11].

Corollary 2. For planar graphs, k-CMI is NP-hard, but admits a PTAS.

Similarly, the locality of the k-CMI optimisation criterion makes it possible
to apply a dynamic programming technique described by Bodlaender [12] to
solve k-CMI optimally and in linear time for the class of graphs with bounded
treewidth, which includes trees, outerplanar graphs, and series-parallel graphs.

Corollary 3. For any constant t ∈ N
+, k-CMI can be optimally solved in O(n)

steps for graphs of treewidth t.

5.3 Complete Graphs

Theorem 8. Given a complete graph Kn of n nodes, k-CMI is optimally solv-
able in O(n2) steps.

Proof. We divide the set of nodes into classes according to the available interfaces
they have. In this way, there will be at most 2k classes. Since the graph is
complete, symmetry implies that every node belonging to the same class has
the same subset of interfaces activated in the optimal solution. The maximum
number of interfaces that a node can activate is of course k. Hence, by trying all
the possible configurations (at most 2k) for the available interfaces in each class,
we can compute the optimal solution in (2k)2

k

steps by checking each time if all
the edges are covered. 
�
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6 Conclusion and Future Work

In this paper we have considered the Cost Minimisation in Multi-Interface Net-
works problem. After providing practical motivation for the study of the problem,
we have concentrated our attention on problem hardness and approximation fac-
tors in general and more specific settings. The obtained results have shown that
the problem is hard and approximation algorithms are highly relevant. This sug-
gests the need for future study of better performing approximation algorithms
or heuristics. Another very interesting issue would be to study the problem
from a distributed point of view. Indeed, it is worth noting that the algorithm
used to derive Theorem 7 can be easily implemented in a distributed setting.
On the other hand, the algorithm proposed in Theorem 3 can be adapted to a
k-approximation distributed algorithm. As also mentioned in the introduction,
other slightly different models of the problem are of main interest in further
investigations.
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Abstract. In this paper we study a pursuit problem in the context of
a wireless sensor network, where the pursuer (i.e., mobile sink) trying to
capture a pursuee (i.e., tracked object), moving with constant velocity, is
always directly communicating with a sensor node in the very near prox-
imity of the pursuee. Assuming that the sensor nodes can adjust their
transmission power depending on the distance ρ between the pursuer and
pursuee according to the usual power law ρ−α, the task is to find the op-
timal trajectory of the pursuer minimizing the total transmission energy.
We approach this classical control theoretic problem by the method of
dynamic programming. The cost function, describing the transmission
cost with an optimal policy, factorizes into radial and angular functions.
The partial differential equation governing the cost function can then
be reduced to an ordinary differential equation for the angular function.
This equation as well as the related optimal trajectories can be solved
numerically. The qualitative behavior of the trajectories is also discussed.
The trajectories are self-similar in the sense that any magnification of
an optimal trajectory is also an optimal trajectory for different initial
conditions.

1 Introduction

Pursuits are common in many areas, including predators that hunt for their
preys, missiles that are heading towards their moving target, or a robot that is
trying to reach (or at least get as close as possible to) its target to be monitored,
etc. (see [1,2] and references therein). Technically speaking, in a pursuit one
particle travels along a specified curve, while a second pursues it, with a motion
directed towards the first. When the pursuer travels faster than the pursued, the
question then becomes: “At what point do the two meet?” “What is the capture
point?” Besides, an interesting study can be made if there is a cost associated
with the pursuit, and the task is to reduce this cost as much as possible. For
example, a trivial objective can be to catch the target as soon as possible. The
answer is typically given by defining the optimal strategy to drive the pursuer,
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or equivalently, defining the optimal curve of pursuit that should be followed.
The curve of pursuit is simply the trajectory traced by the pursuer.

A typical assumption is that the pursuer is always heading right towards the
target, i.e., with the paths of the pursuer and pursuee parameterized in time,
the pursuee is always on the pursuer’s tangent. This is because the pursuee’s
trajectory is not known in advance, either because the pursuer is not able to
predict it, or the pursuee is actively trying to avoid the pursuer by changing
its direction and speed adaptively. However, we concentrate on the problem
where the pursuee is moving constantly along a straight line irrespective to
the pursuer’s behavior, also called as linear pursuit. (An excellent overview of
the history of pursuit curves is found in a series of articles written by Arthur
Bernhart, among which the first discusses pursuit curves where the pursued
moves along a straight line [3].) Moreover, in our model the cost rate is related
with the actual distance of the pursuer from the pursuee during the chase. The
total energy of the entire pursuit is to be minimized, with the consumed power
at each step being proportional to a given power of the relative distance between
the pursuer and pursuee.

We adopt this pursuit problem to a wireless sensor networking scenario. As an
example, consider a sensor networking application where sensor nodes detect any
moving object within their sensing range, and report on it to a sink node. (For
a general description of wireless sensor networks, please refer to [4,5,6].) Here
we assume a single-hop network where all sensors send radio packets directly to
the sink. The most important source of energy leakage in this scenario is the
energy needed for radio communication. We assume that the radio transmission
power obeys the well-known power-law ρ−α as a function of the distance ρ, and
the nodes are able to adjust their transmission power as needed. Since alerted
nodes report periodically, the consumed energy at each time is related to the
distance between the sink and the moving object. A pursuit problem can be
defined if we allow the sink node to move freely. The pursuer in this case is
the mobile sink, while the tracked object takes the role of the pursuee. Since
the mobile sink is constantly communicating with the sensor nodes that are
sensing the object (or, less likely, directly with that object), in order to reduce
energy consumption, the task is to find the optimal pursuit curve that leads to
minimal energy and thus extended network lifetime. (For a detailed description
on the energy consumption, sink mobility and network lifetime in wireless sensor
networks, please refer to [7].)

The task leads to a classical (non-stochastic) control theoretic problem. Dif-
ferential equations for a linear pursuit are sometimes applied, where the pursued
starts at rest and then moves along a straight line. In the simplest case, where
the pursuer is always heading directly towards the pursuee, the equation of mo-
tion for the pursuer is then solvable by first setting the first derivative equal
to a particular point. However, in our case the cost function is nonlinear. We
approach the problem with the dynamic programming approach of Bellman [8],
[9]. The state of the system is defined by the relative position of the pursuer and
the pursuee. Associated with the state there is the cost function which represents
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the minimal cost from that state to the end when optimal curve of pursuit is
followed. An analogous, but for telecommunications people more familiar con-
cept is ‘distance vector’ which represents the length of the shortest path from a
given node to the destination. In this networking context, dynamic programming
principle is well-known from the solution of the shortest-path problem using the
Bellman-Ford algorithm [10]. In our pursuit setting, we derive a partial differen-
tial equation for the cost function. Assuming that the transmission power obeys
the power-law ρ−α, the partial differential equation reduces to an ordinary dif-
ferential equation that can be solved numerically. When the cost function is
known, the optimal trajectories can easily be calculated. In particular, when the
problem is to catch the pursuee in minimum time (i.e., α = 0), one easily infers
that the optimal policy is to head with full speed towards where the pursuee is
going (the meeting point) along a straight line. When large distances are very
costly in terms of transmission power (i.e., α grows), the nature of the trajectory
changes. For very large α the optimal trajectory at any instant heads towards
the pursuee’s current position in order to decrease the distance as quickly as
possible.

Another consequence of the power-law dependent transmission power is that
the optimal pursuit curves are self-similar: given an optimal trajectory from a
given initial point, magnifying the trajectory, i.e., multiplying the distance from
the origin (pursuee) of each point of the trajectory by a constant yields the
optimal pursuit curve starting from the point where the original initial point is
sent by the magnification transformation.

The rest of the paper is organized as follows. In Section 2 the investigated lin-
ear pursuit problem is formulated, and a (non-linear) partial differential equation
is derived for the optimal trajectory, using the dynamic programming method.
The way how to solve this equation is also shown. Section 3 presents numerical
results for different initial parameter settings. Finally, Section 4 concludes the
paper.

2 Pursuit, Cost, Optimal Trajectory

2.1 Notation and Problem Formulation

Consider a linear pursuit game. Assume that the pursuee moves with constant
speed v, and the maximal velocity of the pursuer is u. The pursuer is faster, thus
the ratio ν = v/u is smaller than one. The positions of the pursuee and pursuer
at time t are denoted by s(t) and r(t), respectively (see Fig. 1). In particular,
we will assume that the pursuee moves along the x-axis at a constant velocity,
i.e., s(t) = s(0) + v t e1. The relative position (ρ) of the pursuer to the pursuee
can be expressed as

ρ = r− s = x e1 + y e2,

where e1 and e2 are the perpendicular unit vectors.
Assuming that the communication power (P ) depends on the relative

distance as
P = |ρ|α, α ≥ 0, (1)
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pursuit curve

pursuee

pursuer

s(0)

u

v
ρ s(T ) ≡ r(T )

r(t)

s(t)

r(0)

Fig. 1. Notations, pursuit curve

the task is to navigate the pursuer, i.e., specify the trajectory r(t) up to some time
T when the pursuer catches the pursuee, so that the total energy consumed is min-
imized. Thus, the minimal energy consumption during the ‘chase’ is given by

ε(ρ) = min
|u(t)|≤u,∀t

∫ T

0

|r(t)− s(t)|α dt, (2)

where u(t) = d
dtr(t), ρ = r(0) − s(0) and r(T ) = s(T ). Our task is to find u(t)

that realizes the minimum of (2).
Recalling the wireless sensor networking application mentioned earlier, the

pursuit can be interpreted as follows. Assume that a mobile object is moving
across the sensor field with a constant speed (see Fig. 2). Sensor nodes within

u(0)

v

ρ(0)

ρ(t)

detected target

mobile sink

alerted sensors

s(0)

r(0)

s(t)

r(t)

s(T ) ≡ r(T )

Fig. 2. Minimal energy ‘chase’ trajectory

sensing range that detect the object in its very near proximity send packets to
the sink node via their radio interface. We assume that the nodes are aware of
their actual distance from the sink, and are able to adjust their radio transmis-
sion power according to (1) to reduce energy consumption. (For example, since
we do not have any restriction on the sink node, we can assume that it is capable
of broadcasting its position periodically to every node. Another solution would
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be that—instead of receiving the coordinates from the pursuer—the received
signal strength could be used at the node to estimate the pursuer’s distance
from the node.) Assuming a mobile sink, the task is to find an optimal trajec-
tory for the sink to minimize the overall energy consumption (i.e., (2)) of the
network.

2.2 Catch in Minimum Time

In the case α = 0 the transmission power is constant and the objective reduces
to catching the pursuee in minimum time. It is easy to see that then optimal
strategy for the pursuer is to go with maximal speed along a straight line to the
point where it reaches the pursuee. If the pursuee at time t = 0 is at the origin,
then at time t it is at point (vt, 0). This point is reached by a pursuer at time
t from all the points that lie on a circle with center (vt, 0) and radius ut, see
Fig. 3. The cost function ε(ρ) at point ρ = (x, y) is then the time t that solves
the equation √

(x− vt)2 + y2 = ut.

The solution is

u ε(ρ) =

√
x2 + (1− ν2) y2 − νx

1− ν2
= ρ

√
1− ν2 sin2 θ − ν cos θ

1− ν2
, (3)

where in the latter form we have used polar coordinates, where ρ = |ρ| and θ is
the angle between ρ and e1. Note that the expression factorizes into radial and
angular factors. Rescaling ρ with a constant factor multiplies ε(ρ) by the same
factor. It follows that a magnification of an equivalue contour yields another
equivalue contour as depicted in Fig. 3.

Fig. 3. Equivalue contours of ε(ρ) are circles that are obtained by a magnification or
contraction operation from each other

2.3 Dynamic Programming

For a general α we approach the problem with the method of dynamic program-
ming. Let the pursuer choose the velocity u at time zero and proceed with this
velocity over time interval dt. In order for the initial velocity to be optimal, we
must have
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ε(ρ) = ρα dt + min
|u|≤u

ε(ρ + (u− v) dt)

= ρα dt + min
|u|≤u

{ε(ρ) + (u− v) · ∇ε(ρ) dt} (4)

= ρα dt + ε(ρ)− v · ∇ε(ρ) dt + min
|u|≤u

u · ∇ε(ρ) dt.

The minimum of the last term with respect to u is obtained when the direction of
u is opposite to∇ε(ρ) and |u| = u. The minimum value attained is −u|∇ε(ρ)| dt.
This leads to the first order (non-linear) partial differential equation for the
function ε(ρ),

ρα − v · ∇ε(ρ)− u|∇ε(ρ)| = 0.

In component form this reads

ρα − v
∂ε

∂x
− u

√(
∂ε

∂x

)2

+
(

∂ε

∂y

)2

= 0.

Next we focus on how the solution of this equation can be obtained.

2.4 Solving the Equation

Since the important parameter is the ratio (ν) of the speeds of the pursuee and
pursuer, and not the absolute speeds, without loss of generality we may take
u = 1. Then, with the notation v = νu, the equation reads

ρα − ν
∂ε

∂x
−
√(

∂ε

∂x

)2

+
(

∂ε

∂y

)2

= 0. (5)

This is most easily solved using polar coordinates introduced above, i.e. we solve
ε = ε(ρ, θ). A solution is obtained with the separable trial (cf. the form of (3))

ε(ρ, θ) = 1
1+α ρα+1ϕ(θ), (6)

where the constant factor 1
1+α is introduced for later convenience, and ϕ(θ) is

an angular function yet to be found. With this trial we have

⎧
⎪⎪⎨

⎪⎪⎩

∂ε

∂x
= ρα

(
cos θ ϕ(θ)− sin θ ϕ′(θ)/(1 + α)

)
,

∂ε

∂y
= ρα

(
sin θ ϕ(θ) + cos θ ϕ′(θ)/(1 + α)

)
.

Upon substitution in (5) the factor ρα is canceled and we are left with an ordinary
differential equation for the angular function ϕ(θ),

ν
(

cos θ ϕ(θ) − sin θ ϕ′(θ)/(1 + α)
)

+
√

ϕ(θ)2 + ϕ′(θ)2/(1 + α)2 = 1. (7)
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More explicitly, solved for ϕ′(θ) the differential equation reads1

ϕ′(θ) = (1+α)
ν sin θ −√1− 2νϕ(θ) cos θ − (1− ν2)ϕ2(θ)− ν2ϕ(θ) sin θ cos θ

1− ν2 sin2 θ
.

(8)
Because of symmetry, we have ϕ′(0) = ϕ′(π) = 0. The corresponding values

ϕ(0) and ϕ(π) are readily solved from (7)2,

ϕ(0) =
1

1 + ν
, ϕ(π) =

1
1− ν

. (9)

It is straightforward to check that the angular function, i.e. the coefficient
of ρ, in (3) satisfies (8) for α = 0, while an analytic solution for general α is
not known. Equation (8) can, however, easily be solved numerically3. In Fig. 4 a
family of solutions for ϕ(θ), corresponding to different values of α, α = 0, 1, 2, 5,
and 25, are depicted for a fixed value of ν = 1

2 (with this value of ν we have
ϕ(0) = 2

3 and ϕ(π) = 2).

πê2 π 3πê2 2π

0.33

0.67

1

1.33

1.67

2

Fig. 4. Angular function ϕ(θ) for α = 1, 2, 5, 25 (from top to bottom) with ν = 1
2

3 Numerical Results

Recalling that the velocity vector u of the pursuer is opposite to the direction
of ∇ε(ρ) and that the pursuer always uses the full speed |u| = 1, the trajectory
1 One has to choose the minus sign for the square root; plus sign would lead to an

imaginary solution.
2 These results can be derived also as follows. When θ = 0 or π, the optimal strategy

is obviously to go straight along the x-axis at full speed towards the pursuee. Then,

ε(x e1) =
∫ |x|/(1±ν)

0
(|x| − (1 ± ν) t)α dt = 1

1±ν

∫ |x|
0

(|x| − y)α dy, where ± stands for

sign x. The integration yields ε(x e1) = 1
1±ν

1
1+α

|x|1+α from which, in view of (6),
result (9) follows.

3 To guarantee numerical stability, the equation has to be solved backwards from π
to 0; values in the range θ ∈ (π, 2π) are obtained by symmetry from those in range
θ ∈ (0, π).
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Fig. 5. Trajectories in moving and fixed coordinates
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of the pursuer can be solved when the function ε(ρ) is known. In the sequel, we
denote the unit vector in the direction of −∇ε(ρ) by ε(ρ).

It is useful to note some general properties of the trajectories. First, from the
separable form (6) it follows that the direction of ∇ε is a function of the angle θ
only. It then follows that if f(x, y) = 0 defines the path of a trajectory, then also
f(cx, cy) = 0 is a path for all c > 0. In other words, an arbitrary magnification
or contraction of an optimal path results in another optimal path.

The trajectories can be solved either in moving coordinates (moving with the
pursuee) or in fixed coordinates, i.e. one can solve either ρ(t) or r(t). These are
determined by the differential equations

d

dt
ρ(t) = ε(ρ(t)) − v,

d

dt
r(t) = ε(r(t) − v t).

In Fig. 5 we give examples of the trajectories for three different values of α,
α = 0, 2, 5, with ν = 1

2 . The trajectories are drawn for t ∈ (0, 1) for a pursuer
that reaches the pursuee at time t = 1. For α = 0 the trajectories are straight
lines as they should.

Looking at the trajectories in fixed coordinates (the right hand graphs), one
notes an intuitively obvious behavior. Regarding that at time t = 0 the pursuee
is at point (− 1

2 , 0), we find that in the case α = 0 the pursuer does not head
to ‘where the pursuee is’ but directly to ‘where the pursuee is going’. When the
value of α increases the optimal trajectory more and more turns to the one that
heads to ‘where the pursuee currently is’. This happens in order to decrease
the distance between the pursuer and the pursuee as quickly as possible; this is
advantageous because for a large α the objective function decreases very rapidly
as the distance decreases.

4 Conclusions

We studied a linear pursuit problem with an application example of target de-
tection and tracking in a wireless sensor networking scenario using a mobile sink.
We identified the optimal trajectory that should be followed by the sink to min-
imize the energy consumption in the network. The energy of radio transmission
to be minimized is defined by a cost rate that obeys the well-known power-law
ρ−α as a function of the distance ρ between the mobile sink (pursuer) and the
moving target (pursuee).

We approached the problem by the method of dynamic programming. We
showed that the cost function, describing the radio transmission cost with an
optimal policy, factorizes into radial and angular functions. The partial differ-
ential equation governing the cost function reduces to an ordinary differential
equation for the angular function. This equation as well as the related optimal
trajectories can be solved numerically.
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Parameter α gives a great flexibility to this model. When α is set to zero, the
problem reduces to the task of catching the target as soon as possible. The re-
sulting optimal trajectories in this case are straight lines leading directly towards
the rendezvous-point. On the other hand, when α is set to two or more, the cost
function is a realistic model for the energy requirement of radio transmission.
The resulting optimal trajectory ensures in this case the minimum overall en-
ergy consumption in the network. When α is large, the optimal pursuit is the
one where the sink is always heading right towards the target’s actual position,
trying to reduce the relative distance as much as possible.

An interesting consequence is that, having the power-law dependent cost func-
tion, the optimal pursuit curves are self-similar in the sense, that any magnifica-
tion of the curve results in an optimal trajectory as well, but for different initial
conditions.
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Abstract. In this paper, we propose a hybrid energy saving mechanism (HESM)
that combines power-saving mode (PSM) for real-time traffic with PSM for non
real-time traffic, which is applicable to Voice over IP (VoIP) traffic with silence
suppression. The proposed method uses power saving class (PSC) II during talk-
spurt periods of parties A and/or B. On the other hand, during mutual silence pe-
riods, sleep interval placement is determined by the proposed probabilistic sleep
interval decision (PSID) algorithm. Under the PSID algorithm, the length of sleep
intervals in mutual silence period under the PSID algorithm is determined by the
cumulative density function of the length of mutual silence period. We use Brady
model that is an accurate model of the on-off characteristics of conversational
speech, in order to obtain the CDF. The performances of HESM based on the
PSID algorithm are evaluated by the energy consumption of an MS and the VoIP
packet drop probability. Results show that the proposed HESMs reduce consider-
ably the energy consumption of an MS compared to PSC II, while satisfying the
QoS constraints on the VoIP packet drop probability for VoIP connection in the
base station (BS). Specifically, the result shows that proposed HESM reduces the
energy consumption of MSs by up to 25%.

1 Introduction

In wireless networks, power-saving mode (PSM) is a very important technology for
prolonging the limited battery lifetime of mobile stations (MSs). In general PSM, MSs
enter sleep mode during sleep intervals and wake up during predetermined intervals
(wake-up interval), in order to verify whether there are any buffered packets waiting for
it in the base station (BS). If there are no pending packets, the MSs return to sleep mode.
Otherwise, the MSs and the BS initiate the procedure for data exchange. Since the
packet arrived at the BS during sleep interval should be pended until wake-up interval
starts, PSM inevitably involves the packet buffering delay in the BS. This is the main
reason why PSM has previously been used for only non real-time traffic, such as web-
browsing applications, which allow for longer delays than real-time traffic. However,
the recently-defined IEEE 802.16e standard suggests that PSM may be used for real-
time traffic, under the rubric power-saving class (PSC) II [1].

PSC II is different from PSC I, which is also defined in IEEE 802.16e, but for non
real-time traffic. First, PSC I adopts a binary truncated exponent algorithm, which dou-
bles the length of the sleep interval until it reaches the maximum. By contrast, PSC II

T. Chahed and B. Tuffin (Eds.): NET-COOP 2007, LNCS 4465, pp. 296–304, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. The concept of hybrid energy saving mechanism

uses a fixed length of sleep interval because real-time traffic is generated periodically.
Second, in PSC I, there is a traffic indication message that notifies an MS of the exis-
tence of pending packets in the BS. However, this message is not used in PSC II, in the
interests of eliminating signaling overhead due to frequent packet exchange between
MSs and the BS. Considering these properties of PSC II, if we apply PSM to VoIP
service, which is a real-time application, PSC II, which can adjust the length of sleep
interval according to the period of VoIP traffic generation, should be used.

The characteristics of VoIP packets, such as framing interval, data rate, and silence
suppression, differ according to the voice codec used. Some voice codecs, such as
G.723.1A, G.723.B or Adaptive Multi Rate (AMR) in 3GPP, use silence suppression
functionality, which does not send VoIP packets during silence periods, in order not to
waste system bandwidth. Suppose that PSM is applied to a VoIP service whose codec
supports silence suppression. In this case, it is desirable to use PSC II instead of PSC
I, since VoIP service is a real-time traffic generated periodically. However, using PSM
II alone is not efficient, because PSC II uses a fixed-length sleep interval and does
not discriminate between talk-spurt and mutual silence periods. Instead, in mutual si-
lence periods, it would be more energy-efficient to use an algorithm that places its sleep
intervals flexibly. Thus, in this paper, we suggest a hybrid energy saving mechanism
(HESM), which adopts PSM differently between talk-spurt and mutual silence periods.
The suggested HESM uses PSC II during talk-spurt periods, and probabilistic sleep
interval decision (PSID) algorithm during mutual silence periods. The proposed PSID
algorithm determines the length of the sleep interval according to the distribution func-
tion for the length of mutual silence periods. Fig. 1 shows the concept of the HESM
based on PSID algorithm.

PSM has been widely studied. Since its main purpose is to reduce the power con-
sumption of an MS, almost all previous work has focused on how a suitable sleep
interval placement may be determined for non-real time traffic without deterioration
of Quality of Service (QoS) index such as maximum allowable delay [2]. A method
that minimizes energy consumption for wireless web access using the bounded slow-
down (BSD) protocol is suggested by R. Krashinsky and H. Balakrishnan [3]. The BSD
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protocol minimizes energy consumption while providing a guaranteed bound on RTT
slowdown for request/response network traffic. In [4], the authors proposed a smart
PSM (SPSM) scheme in the context of an IEEE 802.11 WLAN system, which guar-
antees a desired delay performance per user with minimum energy consumption. This
algorithm proposed a penalty function to express the delay constraints of each user
and solved energy-consumption minimization problem subject to delay-performance
constraints. However, to our knowledge, there has been no study of PSM considering
hybrid usage.

The remainder of this paper is structured as follows. In Section 2, Brady model for
the on-off property of biconversational traffic is introduced. Section 3 gives a detailed
explanation of the proposed HESM algorithm. In Section 4, results for the energy con-
sumption of an MS and the packet loss probability are provided as performance metrics.
Section 5 concludes.

2 Brady Model

This paragraph gives a brief explanation of Brady model in [5]. The on-off characteristic
of conversational speech was established by Brady who used a six-state Markov chain
to represent talk-spurt and silent states of two users, A and B, as shown in Fig. 2. Fig. 2
is divided into quadrants. Each quadrant represents a different state for users A and B,
who are engaged in conversation. The upper left quadrant (representing A speaking and
B silent) and the lower right quadrant (representing B speaking and A silent) contain
individually one state, while the lower left quadrant (A and B both silent) and upper
right quadrant (A and B both speaking) contain individually two states to differentiate

�

�

�

�

�

�

�

�

� �

�

�

Fig. 2. Six-state Brady model
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which of the two parties spoke last. The variable α followed by two subscripts is used to
symbolize each state transition parameter, with the first subscript indicating the original
state and the second subscript indicating the new state. For example, α1,4 refers to the
transition from State 1 to State 4 in Fig. 2. Notice that the state transition parameters for
parties A and B have the same value. For the details, interested readers are encouraged
to read the article by Brady [5].

Let Y be a random variable representing the length of a mutual silence period. From
the Brady model, the cdf of Y is calculated as

FY (t) = 1− e−λt (1)

where λ = α4,1 + α4,6.
Let M be the matrix representing the state transition probability defined in

Fig. 2. Solving the equilibrium equation of the Markov chain, Π = Π · M where
Π = (π1, π2, . . . , π6) and πi denotes a portion of state i, indicates that the portions of
mutual silence periods (π4 + π5) against the duration of the entire conversation amount
to around 19%. This result justifies the usage of the PSID algorithm during mutual
silence periods, even for real-time VoIP traffic.

3 Hybrid Energy Saving Mechanism

When the voice codec of each party uses silence suppression functionality, VoIP packets
are generated periodically during the talk-spurt period, but not generated at all during
silent periods. Instead, a Silence Insertion Descriptor (SID) frame is generated at the
beginning of a silent period [6]. Thus, the starting time of mutual silence period can be
decided in the BS by verifying the acceptance of SIP frames of both parties A and B.

The basic concept of HESM is to use different PSM according to the voice activity of
each party. During talk-spurt periods, PSC II with a fixed length of sleep interval is used.
During mutual silence periods, we consider PSID algorithm, so as to save the energy
consumption of an MS. Hereafter, we call the method that uses the PSID algorithm
during mutual silence periods the HESM-PSID algorithm.

Here, we define the notation to be used in the remainder of this paper. Let the length
of the i-th sleep interval and the length of the wake-up interval be Ti and Tl, respec-
tively. Considering the wake-up interval, we denote the length of the j-th sleep interval
with wake-up interval by T j = Tj + Tl. Then, assuming that PSM starts at time 0, the
j-th sleep interval with wake-up interval is expressed as

S1 = [0, T 1), (2)

Sj = [
j−1∑

i=1

T i,

j∑

i=1

T i) for j ≥ 2. (3)

In addition, we define the fixed length of sleep interval when PSC II is applied to talk-
spurt periods as Tf . Tf is determined according to the framing interval of the voice
codec used.

The PSID algorithm uses the distribution of length of a mutual silence period derived
in (1) during mutual silence periods. The key concept of the proposed PSID algorithm
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Fig. 3. Examples of the PSID-HESM algorithm

is to place sleep intervals such that the probability that a mutual silence period may end
within a sleep interval is the same across all sleep intervals in the extension-allowed
interval. As for the extension-allowed interval in the PSID algorithm, the length of
the longest sleep interval should be controlled, to prevent them from being excessively
long. The PSID algorithm determines the extension-allowed interval according to the
distribution function for Y in order to reflect Y ’s behavior. Suppose that a mutual si-
lence period starts at time 0. Let the extension-allowed interval be [0, β]. We determine
the target probability Ptar,k which denotes the probability that Y is included in the
extension-allowed interval. In this paper, Ptar,k is chosen in terms of the mean (E{Y })
and standard deviation (σY ) of Y as follows:

Ptar,k = FY (E{Y }+ k · σY ) = FY (
1 + k

λ
) (4)

where k is a real number. By the definition of Ptar,k,

β =
1 + k

λ
. (5)

To determine the exact position of each sleep interval in the extension-allowed
interval, the extension-allowed interval, [0, β], should be divided into appropriate subin-
tervals each of which becomes the sleep interval. Let the number of these subinter-
vals be N . The PSID algorithm divides [0, β] into N mutually exclusive subintervals,
S1, S2, . . . , SN . Let Sj = [αi, βi]. The PSID algorithm determines βi so as to satisfy
the following equation:

FY (βi) = i
Ptar,k

N
(i = 1, 2, . . . , N.) (6)

By definition, α1 = 0. From the mutual exclusiveness of each Sj , βi = αi+1. In
addition, βN = β from (4), (5) and (6). The above method completely determines {Si}
for 1 ≤ i ≤ N . Further, the probability that Y is included in the extension-allowed
interval should not be 1, because β goes to infinity when Ptar,k = 1. Thus, there is a
probability of 1− Ptar,k that the mutual silence period may end outside the extension-
allowed interval. When the mutual silence period does not end within the extension-
allowed interval, the PSID algorithm sets TN+j to TN for j ≥ 1, and this length is
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Table 1. Sleep Interval Placement for the HESM-PSID algorithm

Ptar,k N β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

0.637
(k = 0)

2 120 310 500 690 880 1070 1260 1450 1640 1830
3 75 170 310 450 590 730 870 1010 1150 1290
4 55 120 200 310 420 530 640 750 860 970
5 45 90 150 220 310 400 490 580 670 760
6 35 75 120 170 230 310 390 470 550 630
7 30 65 100 140 185 240 310 380 450 520
8 30 55 85 120 155 200 250 310 370 430
9 25 50 75 105 135 170 210 255 310 365

10 20 45 65 90 120 150 180 220 260 310

0.866
(k = 1)

2 175 615 1055 1595 1935 2375 2815 3255 3695 4135
3 105 265 615 965 1315 1665 2015 2365 2715 3065
4 75 175 325 615 905 1195 1485 1775 2065 2355
5 60 130 25 365 615 865 1115 1365 1615 1865
6 50 105 175 265 395 615 835 1055 1275 1495
7 45 90 145 210 295 415 615 815 1015 1215
8 40 75 125 175 240 325 435 615 795 975
9 35 70 105 150 205 265 345 450 615 780

10 30 60 95 130 175 225 285 365 465 615

the same as that of the last (longest because of the exponential distribution of Y ) sleep
interval inside the extension-allowed interval. So, TN+j is the same as TN .

From (6), the probability that the mutual silence period ends within T j becomes

P{Y ∈ Sj} = FY (βi)− FY (αi)

= FY (βi)− FY (βi−1) =
Ptar,k

N
. (7)

It means that the PSID algorithm divides the extension-allowed interval evenly, so that
the probability that the mutual silence period ends within each Sj is the same across all
j less than N . However, the length of sleep interval T j differ from each other, because
Y follows an exponential distribution (i.e., Y is not a constant function). For example,
in Fig. 3 b), {T j} is not the same, but increases as j increases from 1 to 4. However,
the size of area I, II, III, and IV, each of which represents the probability that Y ends
within S1, S2, S3 and S4 respectively, is the same. Notice that the actual placement of
each Sj depends on Ptar,k and N in the PSID algorithm.

4 Performance Evaluation

4.1 Simulation Setup

We evaluate the performance of the HESM-PSID algorithm in the context of IEEE
802.16e system. The granularity of the sleep interval length is set to 5ms according to
the frame length1 defined in [1]. The length of wake-up interval Tl is assumed to be one

1 In [1], possible frame lengths for OFDMA (Orthogonal Frequency Division Multiple Access)
are 2ms, 2.5ms, 4ms, 5ms, 8ms, 10ms, 12.5ms, and 20ms.
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frame length, 5ms. The packet generation ratio of VoIP codec is assumed to be 20ms,
so we set the length of sleep interval during PSC II periods, Tf , to 15ms considering Tl.
The end-to-end delay threshold, to satisfy delay constraint in VoIP traffic, is assumed,
as in [7], to be 270ms. With this assumption, Dthr which is the maximum allowable
delay in the BS is set to 197ms [8]. The sleep interval placement under the PSID-HESM
algorithm is derived from Ptar,k and N . Table 1 shows various sleep interval positions
according to Ptar,k and N with assumption that a mutual silence period starts at time 0.
For evaluation of energy consumption of an MS, we define Eslp and Eact as the energy
consumption of MS in sleeping and active modes, respectively. 1.5W and 0.045W are
used as values of Eact and Eslp, respectively [9]. Monte Carlo method with 10, 000
trials is used for simulation runs and each run (conversation) lasts 100 secs.

4.2 Result for Energy Consumption of an MS

The energy consumption of the MS for the HESM-PSID algorithm compared to the
PSC II-only method is shown in Fig. 4 (b). For each k, as N increases, the energy con-
sumption increases due to shorter sleep intervals. Larger k results in a longer extension-
allowed interval. Thus, given that the number of subintervals (N ) is fixed, the increment
of k results in long subintervals. So, the number of wake-up intervals experienced by the
MS is reduced. That is why the energy consumption for k = 1 is smaller than that for
k = 0. Fig. 4 shows that the HESM-PSID algorithm can reduce the energy consumption
of an MS by up to 25%.

Fig. 4. Energy consumption for the HESM-PSID algorithm as a function of N
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4.3 Result for VoIP Packet Drop Probability

When the length of sleep interval is longer than the maximum allowable delay Dthr,
some VoIP packets arrived at the BS during the sleep interval may be missing. Fig. 5
presents the drop probability of VoIP packets due to the buffering delay in the BS when
the HESM-PSID algorithm is applied in cases of k = 0 and k = 1. When k = 0 and
N = 2, the lengths of sleep intervals are 120ms and 190ms (refer to Table 1), which
are less than Dthr. So the packet drop probability due to the buffering delay in the BS
becomes 0. Since the length of sleep interval decreases as N increases, the packet drop
probability is 0 for all N ≥ 2 when k = 0. By contrast, when k = 1, the smaller N
causes longer sleep intervals, because the subinterval of the extension-allowed interval
increases. Thus, the packet drop probability increases as N decreases. However, when
N is large enough to cause all subintervals included in the extension-allowed interval to
be smaller than Dthr (under the given conditions, N > 6), the packet drop probability
becomes zero.

Fig. 5. VoIP packet drop probability in the BS for the HESM-PSID algorithm as a function of N

5 Conclusions

In this paper, we suggested the HESM algorithm for VoIP traffic with silence suppres-
sion. The proposed HESM algorithm uses PSC II during talk-spurt periods and the PSID
algorithm during mutual silence periods. In the HESM-PSID algorithm, Ptar,k and N
determine the length of sleep intervals in mutual silence periods, in order that the proba-
bility that a mutual silence period may end within each sleep interval is the same across
all sleep intervals in the extension-allowed interval. The performances for the energy
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consumption of an MS and packet drop probability were provided. The results show
that the energy consumption of an MS can be reduced by up to 25% compared to PSC
II-only method while satisfying the delay constraint of VoIP connection in the BS when
the HESM-PSID algorithm with k = 1 is used.
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